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1 Introduction

The comparison between financial markets and casinos, both as places to express our natural

urge for gambling, has a long tradition in popular and academic circles (Keynes, 1936,

Chapter 12). Yet, the formalization of the idea that gambling plays a role in understanding

the price of financial assets has been challenging.

Early works have introduced a preference for skewness in otherwise standard expected

utility models (EUT models, henceforth) of portfolio selection (Arditti, 1967; Rubinstein,

1973; Kraus and Litzenberger, 1976; Scott and Horvath, 1980). This literature shows that

systematic skewness is priced and that the resulting skewness risk premium cannot be fully

explained by known risk factors (Chang et al., 2013). Related works have shown that down-

side risk is priced, thus revealing the role of negative skewness at the market level as a critical

risk factor driving the market risk premium (Kelly and Jiang, 2014; Lu and Murray, 2019).

At the individual stock level, however, positive rather than negative skewness is often

observed (Albuquerque, 2012; Bessembinder, 2018; Oh and Wachter, 2022), spurring a new

wave of models that depart from the standard EUT framework to explain how positive

skewness can impact individual stock returns.

These models emphasize the key role of probability distortions (Brunnermeier et al., 2007;

Barberis and Huang, 2008; Driessen et al., 2021), thereby generating novel predictions that

do not consistently arise under EUT, while also explaining existing financial puzzles, such

as the low average return on IPOs and private equity, as well as the lack of diversification

in household portfolios. In particular, these models predict that an asset’s future skewness,

even if idiosyncratic, will impact asset pricing. More specifically, a positively skewed asset

can earn a negative average excess return even if it is in small supply and independent

of other risks (Barberis and Huang, 2008). This is precisely the prediction we want to

test. Doing so, we will also directly test the mechanism underlying most of these behavioral

models, namely probability weighting. As originally proposed by Barberis and Huang (2008),

lottery assets, characterized by positive skewness and typically a small chance of obtaining

a large reward, will trigger risk-seeking behaviors because people tend to overweight small

probabilities (Quiggin, 1982; Tversky and Kahneman, 1992; Prelec, 1998; Gonzalez and Wu,

1999; Abdellaoui, 2000; Bruhin et al., 2010; l’Haridon and Vieider, 2019).

Empirical studies to date have primarily examined the reduced-form predictions of these

behavioral theories, rather than directly testing their underlying mechanisms. Studies have

shown that people who invest in the stock market resemble those who purchase state lotteries

(Kumar, 2009; Doran et al., 2012) and that punctual increases in lottery prizes lead to

reduced investments in stocks with lottery features (Dorn et al., 2015; Gao and Lin, 2015).
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Furthermore, an abnormally high proportion of stock market investors are diagnosed as

compulsive gamblers (Cox et al., 2020). The evidence also shows a general appeal for stocks

exhibiting positive skewness. In particular, using archival data, a series of papers have

shown that positive skewness is associated with lower returns, thus reflecting a preference

for skewness (Boyer et al., 2010; Bali et al., 2011; Conrad et al., 2013, 2014; Lin and Liu,

2018).

One notable exception in the empirical literature is the work of Barberis et al. (2016)

who propose a test of the underlying mechanism of skewness preferences based on prob-

ability weighting (Barberis and Huang, 2008). To that end, the authors assume that the

representative investor maximizes a prospect theory (PT, henceforth) value function using

the parameter values estimated by Tversky and Kahneman (1992). Using archival data, they

calculate the estimated value of a stock according to PT from its monthly return distribution

over the last five years. They show that stocks with a higher PT value produce lower returns.

In line with previous empirical studies, they also report that positive expected skewness is

the main driver of lower returns.

Despite the contribution of Barberis et al. (2016), current empirical research largely fa-

vors reduced-form evidence over direct tests of the models of skewness preferences. This

might be one reason why no behavioral asset pricing model has yet been widely accepted.

As emphasized in Hirshleifer (2015), there is a critical need to test behavioral models by

studying the proposed causal pathways. Testing the causal links between skewness, proba-

bility weighting, and asset pricing using archival data is a daunting task because researchers

can neither exogenously manipulate the skewness of a stock nor precisely assess investors’

probability weighting. Archival evidence reveals a negative relationship between a stock’s

expected skewness and its subsequent return. However, stocks with high expected skewness

might also differ from other stocks in terms of unknown risk factors. As is often the case,

this joint hypothesis problem makes it difficult to provide causal estimates (Fama, 1970).

Moreover, the pricing of idiosyncratic skewness can also be rationalized by EUT preferences

when agents are heterogeneous (Mitton and Vorkink, 2007), making it difficult to distinguish

between standard and behavioral models without evidence on the underlying mechanisms.

To alleviate the previous issues, we use an experimental approach that allows us to

manipulate asset skewness exogenously and elicit precise individual estimates of probability

weighting. Our protocol enables us to test the causal impact of probability weighting on asset

pricing thus providing a direct test of the model of Barberis and Huang (2008). Our asset

markets build on CAPM experiments (Bossaerts and Plott, 2004; Bossaerts et al., 2007) in

which participants trade two risky assets and a risk-free asset in a continuous double auction.

We consider a 2x2 design in which we varied the skewness of one of the risky assets across
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two levels (zero and positive). We focus on the case of positive skewness rather than negative

skewness due to its empirical relevance at the level of individual assets (Albuquerque, 2012),

and because it enables us to test the prediction made by Barberis and Huang (2008) that

positive skewness can lead to excess negative returns. We also varied the supply of the

skewed asset across two levels (low and high) to test the specific prediction of Barberis and

Huang (2008) that a positively skewed asset can earn a negative return even when its supply

is low and thus its impact on the market portfolio is minimal. As we show in our theory

section, the comparative statics across supply treatments are critical for teasing apart the

predictions of behavioral models from those of standard EUT models.

Our first result, based on the high-supply treatments confirms a basic prediction of early

models incorporating systematic skewness as a risk factor (Arditti, 1967; Rubinstein, 1973;

Kraus and Litzenberger, 1976; Scott and Horvath, 1980) by showing that systematic positive

skewness produces negative expected returns.1 Furthermore, we show that idiosyncratic

skewness is priced in the low-supply treatments in line with non-EUT models (e.g., Barberis

and Huang, 2008; Driessen et al., 2021), but contrary to the predictions of EUT-based

models. Finally, we provide a direct test of the model proposed by Barberis and Huang

(2008) and show that, consistent with predictions, the negative return is most pronounced

when traders in a market distort probabilities by assigning greater weight to low-probability

positive payoffs.

Going beyond consistency checks, ours is the first study to provide causal tests of com-

peting models that incorporate skewness pricing. Our approach paves the way for new

research offering granular tests of both behavioral and classical asset pricing models. The

remainder of the paper is organized as follows. In Section 2 we present our experimental

design, including the asset market, the treatments, the risk-preference elicitation protocol

and other details. In Section 3 we discuss the asset pricing implications of different theories

in our setting and derive hypotheses. We contrast standard theories such as CAPM and the

mean-variance-skewness model to behavioral theories that incorporate probability-weighting.

Section 4 analyzes the results and tests the hypotheses and Section 5 concludes.

2 Design

The experiment involves three parts: an asset market, a series of multiple-price lists, and

a questionnaire aimed at measuring cognitive ability, financial literacy, and demographics.

1Previous experimental evidence is limited to single-asset markets, e.g. Huber et al. (2014).
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The design along with our hypotheses were preregistered at AsPredicted #148757.2

2.1 The Asset Market

We employ a standard CAPM experimental asset market (Bossaerts and Plott, 2004; Bossaerts

et al., 2007) involving the trading of two risky assets and a risk-free asset. The asset mar-

ket consists of 13 periods (including an initial practice period), with each period lasting 5

minutes. During each period, there are 10 market participants who can buy and sell two

risky assets, called X and Y, and a safe asset, called Z. Each unit of an asset yields a payoff

if held until the end of the period. Participants know the probability distribution of the

asset payoffs, which varies from period to period. Participants start each period with new

endowments of the three assets and cash. The assets and cash accumulated in the previous

period are not carried over to the next period.

During the market period, participants trade assets for cash. Participants can enter limit

orders (called bids and asks), which are displayed in electronic order books, with one book for

each asset. Each limit order is for one unit of an asset. If a limit order bid (ask) surpasses

an existing limit order ask (bid), a unit of the asset is exchanged at the prevailing limit

order ask (bid) price. Alternatively, a transaction can be instantly executed by selecting

any existing bids or asks in the order books (i.e. through a market order). Assets X and

Y cannot be sold short, while short sales of asset Z (the risk-free asset) are allowed up to 5

units.3 Participants are also endowed with a cash reserve that cannot be used to purchase

assets (unlike the cash endowment) and is used to buffer potential negative earnings from

short sales.

At the end of each market period, the computer randomly determines the final payoffs

of the assets using the given probabilities. The participant’s score for the period is equal

to the final payoffs of each asset multiplied by the number of units of each asset owned by

the participant, plus the cash available at the end of the period and the cash reserve. To

calculate the participant’s final payment for the market experiment, the computer randomly

selects one of the 12 periods. For the randomly selected period, the participant receives their

score as payment in cents of euros.

2Our main hypothesis was in line with our PT model à la Barberis and Huang (2008) (see Section 3.2)
captured in Hypothesis 3, and was stated as follows: “The main hypothesis is that positive skewness will
lead to a higher asset price and even negative expected returns, when the skewed asset supply is lower and
probability weighting is larger.”

3We allow for short sales of the risk-free asset following Bossaerts and Plott (2004) as it can be an
equilibrium strategy depending on the risk-aversion of the individual. As shown in Bossaerts and Plott
(2004), forbidding the short-selling of risky assets does not alter the standard theoretical predictions much.
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2.2 Treatments

We consider a 2x2 design in which we vary the skewness of one of the risky assets across two

levels (Skew and NoSkew) along with the supply of the skewed asset (High and Low). We

thus have four treatments: Skew-H, Skew-L, NoSkew-H and NoSkew-L. We adopt a within-

subject design, repeating each treatment for 3 periods in a random sequence of 12 market

periods (the first practice period is always a NoSkew-L treatment). Information on periods,

treatments and sessions is summarized in Table 1 for convenience.

Practice period Periods Periods per treatment Sessions Participants per session

1 12 3 13 10

Table 1: Information on market periods and sessions

2.2.1 Payoffs and skewness

The risk-free asset Z has a sure payoff of 100. Each risky asset j ∈ {X, Y } yields either a

high payoff dj or a low payoff dj < dj. The payoff values and the respective probabilities are

summarized in Table 2. The payoff distribution of asset Y is varied across treatments. In

Skew treatments, asset Y has skewed payoffs and in NoSkew treatments it has a symmetric

(non-skewed) payoff distribution. These two types of asset Y are thus never traded in the

same market. The non-skewed version of asset Y has the same marginal payoff distribution as

asset X. Importantly, the payoffs of X and Y are independent. This simplifying assumption

is not critical to our main prediction and is used in Barberis and Huang (2008) (Assumption

13). We thus have four states, {(dX , dY ), (dX , dY ), (dX , dY ), (dX , dY )}, with probabilities

{0.25, 0.25, 0.25, 0.25} in the NoSkew treatments and {0.025, 0.475, 0.025, 0.475} in the Skew

treatments. Another simplifying feature of our market is that the two risky assets have the

same mean (µX = µY = µ) and variance (σ2
X = σ2

Y = σ2). The payoff distribution of X

is symmetric, with zero skewness, and the same holds for the non-skewed version of asset

Y (used in NoSkew treatments). However, the skewed version of asset Y (used in Skew

treatments) has a positive skewness, measured in Table 2 as:

skewj ≡ E





(

dj − µj

σj

)3




.
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Asset Payoff distribution Mean SD Skewness

X (156,84;0.5,0.5) 120 36 0
Y: non-skewed (156,84;0.5,0.5) 120 36 0
Y: skewed (277,112;0.05,0.95) 120 36 4
Z (100;1) 100 0 0

Table 2: Asset payoffs

2.2.2 Supply of skewed assets

The experiment varies not only the distribution of payoffs, but also the endowments, as shown

in Table 3. In high-supply treatments (Skew-H and NoSkew-H), the aggregate supply of Y

(NY ) is as large as that of X (NX), where: NX = NY = 55. In low-supply treatments (Skew-

L and NoSkew-L), asset Y is in short supply relatively to asset X: NX = 100, NY = 10, and

amounts to only 9.1% of the total supply of risky assets compared to 50% in the high-supply

treatments. The relative supply of the skewed asset was chosen to be low enough so that the

prediction in Barberis and Huang (2008) regarding the excess negative return of the skewed

asset holds (see Section 3.2).

Within each treatment, there are also individual differences in endowments, which are

introduced to provide incentives to trade. In each market period, half of the participants (5

out of 10) have a type-1 endowment and the remaining have a type-2 endowment. Endow-

ment types are randomly assigned in each period. As shown in Table 3, a type-1 participant

has a larger endowment of asset X and a lower endowment of asset Y relative to a type-2

participant. In all treatments, participants have a zero endowment of the risk-free asset Z

and have a cash endowment of 200. As mentioned before, in each period participants also

receive a cash reserve, which cannot be used for transactions. The cash reserve is set to 500

in order to absorb the highest potential payment incurred by a participant selling asset Z

short (up to the short-selling limit of 5 units).
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Supply of Y asset

High Low

Aggregate supply

NX = 55 NX = 100

NY = 55 NY = 10

NZ = 0 NZ = 0

Individual endowments

Type 1:

nX = 9 nX = 11

nY = 2 nY = 0

Type 2:

nX = 2 nX = 9

nY = 9 nY = 2

All types:

nZ = 0 nZ = 0

Cash=200 Cash=200

Note: In a market there are 5 type-1 participants and 5 type-2 participants.

Table 3: Aggregate supply and endowments

2.3 Risk Preferences Elicitation

The risk preference elicitation consists of collecting certainty equivalents of binary lotteries

L = (x, y; q, 1 − q), with x being the outcome that occurs with probability q, and y being

the outcome that occurs with probability 1 − q. We use a multiple-price list technique

in which the certainty equivalent of a lottery is inferred through binary decisions between

two options. The first option is the lottery, and the second one is a list of equally spaced

certain outcomes, ranging from max{x, y} to min{x, y}. The elicitation involves the 12

binary lotteries reproduced in Table 4, obtained by combining four probabilities q ∈ Q =

{0.025, 0.05, 0.25, 0.5} and three different (x, y) pairs. These probabilities and outcomes are

chosen to allow for both the parametric estimation of the probability weighting function

(Tversky and Kahneman, 1992) and the semi-parametric elicitation of probability weights

(Abdellaoui et al., 2008; Kpegli et al., 2023; Corgnet et al., 2023). The semi-parametric

estimation procedure allows us to estimate the individual weights traders assigned to each
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of the probabilities that are relevant to our asset payoffs.4 Appendix B provides additional

details on our elicitation procedure.

Table 4: Lotteries used in the risk elicitation procedure

N◦ Lottery x y q

1 100 0 0.025

2 100 50 0.025

3 50 0 0.025

4 100 0 0.05

5 100 50 0.05

6 50 0 0.05

7 100 0 0.25

8 100 50 0.25

9 50 0 0.25

10 100 0 0.50

11 100 50 0.50

12 50 0 0.50

2.4 Protocol

We recruited 130 participants from the GATE platform in Lyon (France), which had an

active pool of participants of around 1,500 at the time of the experiment (November 2023).

We conducted 13 independent sessions with 10 participants each leaving us with 169 market

observations.5 Two sessions were conducted at a time except for the first session. Most of

the participants in the pool belong to the business school or the engineering school.

Participants were recruited for 90 minutes and sessions were completed on average in 75

minutes for an average payment of 16 euros. When entering the lab, participants were invited

to pick a card from an opaque bag indicating their exact cubicle location. Participants

read the instructions for an average of 20 minutes before answering a 5-item incentivized

quiz giving them 25 cents per correct answer. The full set of instructions is available at

https://osf.io/z82bj/?view_only=e00a334ccda3486dafa2ee2d8f34cc5e.

4Indeed, the set of probabilities Q used in the elicitation procedure includes 0.025 and 0.25, which are
associated with the highest payoffs for assets X and Y : dX and dY .

5Using previous CAPM experiments as a benchmark (Bossaerts and Plott, 2004), we calculated that
we needed about 150 market-level observations to detect significant differences in returns for asset Y across
treatments at the 5% level. We thus conducted 12 sessions, resulting in 156 market observations, to which we
added the pilot session data (13 observations). Our sample size was preregistered at AsPredicted #148757.
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At the end of the market experiment, participants completed a questionnaire lasting 10

minutes on average. They first completed the risk preference elicitation described in Section

2.3. We then asked participants to complete a financial literacy test using the big-five

questionnaire (Angrisani et al., 2020) and a 4-item version of the Cognitive Reflection Test

(CRT, henceforth) (Frederick, 2005; Toplak et al., 2014) to assess cognitive ability (Corgnet

et al., 2018; Bosch-Rosa and Corgnet, 2022). Finally, we collected basic demographics: age,

gender, and field of study. In Appendix C, we report descriptive statistics for our individual

measurements. The experiment was developed in oTree (Chen et al., 2016).6

3 Theory and Hypotheses

3.1 Expected Utility Theory

In this section, we discuss the predictions of different theoretical frameworks with regard to

the pricing of skewness in our experimental market.7 We begin with the standard theory of

asset pricing, i.e. the CAPM, which is based on the assumption that investors have mean-

variance utility. In turn, such preferences can be derived as a second-order approximation

of expected utility (which is exact for a quadratic Bernoulli utility). Thus, we assume that

the utility of a representative investor is given by:

E(W )−
1

2
γ × var(W )

where W is final wealth.8 Then, in our market with two independent risky assets, the price

of asset j ∈ {X, Y } is given by:

Pj(1 + rf ) = µj − γNjσ
2
j

where rf is the return on the risk-free asset Z, µj is the expected payoff of asset j, Nj is

the aggregate supply of asset j, σ2
j is the variance of asset j payoffs. Assuming investors

are variance-averse (γ > 0) and prices are positive, risky assets X and Y will have positive

expected returns in any treatment:

E(rj) =
µjrf + γNjσ

2
j

µj − γNjσ2
j

> 0

6For another experiment using the same oTree asset market platform, see Duffy et al. (2024).
7The main mathematical expressions used in this section are derived in Appendix A.
8Although our market is incomplete, a representative agent exists if investors have linear risk tolerance

with common cautiousness parameters, see Rubinstein (1974).
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where rj =
dj−Pj

Pj
is the return on asset j.9 Risk premia will be affected by aggregate supplies

so that a smaller supply will result in a higher price and thus a lower, yet positive, expected

return. But, payoff skewness, unlike variance, will not be priced. Thus, while asset prices

will be different in treatments with different supply levels, prices will not be affected by

whether the payoffs of Y are skewed or not.

Going beyond the simple quadratic utility case, it is well-known that EUT can generate

a preference for positive skewness in final wealth, which in turn can affect asset prices. To

analyze this effect, we consider a mean-variance-skewness model, which can be obtained as

a third-order approximation of expected utility:

E(W )−
1

2
ϕvvar(W ) +

1

3
ϕsS(W ) (1)

where ϕv > 0 and ϕs > 0 capture variance aversion and skewness seeking, and S(W ) ≡

E[(W−E(W ))3] denotes the third central moment of final wealth.10 As shown by Kraus and

Litzenberger (1976), under such preferences, an asset coskewness with the market portfolio

(i.e. its contribution to market skewness) will be priced. This is often taken to imply that

the idiosyncratic skewness of an asset will not be priced since the share of any individual

stock in the market portfolio is negligible.11 This is not the case in our experimental markets

because even in the low-supply treatments the aggregate expected payoff of asset Y is around

9% of the market expected payoff. Thus, the skewness of asset Y will affect asset prices if

the traders in our experiment have mean-variance-skewness preferences. Assuming investors

prefer positive skewness (ϕs > 0), asset Y will trade at higher price (earning lower expected

returns) in the skewed treatment.

Nonetheless, even in our experiment, the mean-variance-skewness model cannot rational-

ize negative returns when the aggregate supply of asset Y is small. To illustrate this point,

we solve for the expected return of asset Y in equilibrium:

E(rY ) =
rfµY + ϕvσ

2
YNY − ϕsSYN

2
Y

µY − ϕvσ2
YNY + ϕsSYN2

Y

(2)

where SY ≡ E[(dY − E(dY ))
3] is the the third central moment of Y ’s payoffs. We plot the

9Throughout the paper we refer to net returns simply as returns. All our theoretical results can also be
expressed in terms of excess returns. In our data, excess returns are close to net returns on average, because
the risk-free rate is close to 0 since there is no scope for time discounting by design, but excess returns are
noisier.

10The third central moment S(X) and the skewness of a random variable skew(X) are related by the

following formula: skew(X) = S(X)
SD(X)3 , where SD(X) is the standard deviation.

11However, see Mitton and Vorkink (2007) for a model of mean-variance-skewness preferences where id-
iosyncratic skewness is priced when investors have heterogeneous preferences for skewness.
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Figure 1: Effect of supply on returns of the skewed asset

expected return of asset Y as a function of asset Y supply in Figure 1. For high supply

values, skewness seeking dominates variance aversion, resulting in negative returns. For low

supply values, below a given threshold N∗, variance aversion dominates, resulting in positive

returns.12 This is a consequence of the fact that the size of the investment has a higher-order

effect on portfolio skewness than on portfolio variance, and thus portfolio skewness vanishes

more rapidly as asset holdings decrease.13 While we do not know the value of N∗ in our

experiment as it depends on preferences, the mean-variance-skewness model makes a clear

comparative static prediction: if skewed asset Y earns positive returns when its supply is

large, then it cannot earn negative returns when its supply is small.14 A formal proof of this

statement is provided in Appendix A.2.

12In the same vein, Corgnet et al. (2023) show that for a small positively skewed productivity shock
affecting wages, below a given threshold, variance aversion dominates skewness seeking for a decision-maker
under mean-variance-skewness. Conversely, skewness seeking dominates variance aversion only when the
positively skewed productivity shock affecting wages is large.

13Ebert and Karehnke (2021) demonstrate that skewness seeking has a third-order effect while risk-aversion
has a second-order effect under mean-variance-skewness utility and under EUT more generally.

14The analysis so far has assumed a representative investor. However, the main conclusion is likely to hold
even when investors have heterogeneous preferences, as in the model of Mitton and Vorkink (2007). In this
model a group of investors ends up holding a portfolio that is heavily tilted towards the skewed asset. If
a decrease in the aggregate supply of the skewed asset results in a decrease in the holding of that asset by
skewness seeking investors, then our main conclusion continues to hold in this model.
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3.2 Prospect Theory

PT provides distinct implications for the pricing of skewed assets. As shown in Barberis

and Huang (2008), not only an asset’s own skewness level will affect prices, but a positively

skewed asset will earn negative expected excess returns when its supply is small and even

infinitesimal. To show this, we adapt the model of Barberis and Huang (2008) to our setting.

The investor’s preferences are defined over the gain or loss relative to the final wealth that

could have been obtained investing only in the risk-free asset:

Ŵ ≡ W − (1 + rf )W
0

where we denote by W 0 and W initial and final wealth respectively. In our setting, Ŵ is a

random variable that can be represented with the following lottery:

(Ŵ−m, q−m; ...; Ŵ−1, q−1; Ŵ0, q0; Ŵ1, q1; ...Ŵn, qn)

where Ŵk < Ŵl for k < l, Ŵ0 = 0 and qk is the probability of occurrence of an outcome of

rank k. The preferences of the investor are represented by:

V (Ŵ ) =
n
∑

k=−m

πkv(Ŵk)

where v(·) is the value function and the πk terms are decision weights, defined as:

πk =







w(qk + ...+ qn)− w(qk+1 + ...+ qn), if 0 ≤ k ≤ n

w(q−m + ...+ qk)− w(q−m + ...+ qk−1), if −m ≤ k < 0

where w(·) is the probability weighting function. We follow Barberis and Huang (2008) and

specify the functions v(·) and w(·) as follows:

v(x) =







xα, if x ≥ 0

−λ(−x)α, if x < 0

w(q) =
qδ

[qδ + (1− q)δ]1/δ

The parameters α, δ and λ are set equal to the values estimated by Tversky and Kahneman

(1992): α = 0.88, δ = 0.65 and λ = 2.25.

When δ < 1, the probability weighting function features overweighting of small probabil-
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ities, which in turn leads to a preference for positive skewness. Since investors value positive

skewness, a positively skewed asset will have a higher price and lower expected returns than

a non-skewed asset, ceteris paribus. However, as in Barberis and Huang (2008), the utility

investors obtain from holding the skewed asset is non-monotonic in the fraction of wealth

allocated to asset Y relative to the fraction of wealth allocated to asset X, denoted s (see

Figure 2). Beginning with a portfolio containing only the risk-free asset and the non-skewed

asset, a small investment in the skewed asset initially diminishes utility due to its negative

average return. As s increases, the skewed asset contributes more significantly to the skew-

ness of the portfolio’s returns. Consequently, utility rises. However, as the investment in

the skewed asset further increases, the increased skewness fails to offset the heightened risk,

resulting in a decline in utility. This has two important consequences. First, there are two

optima in the investor’s portfolio problem (s = 0 and s = s∗), leading to heterogeneous port-

folios in equilibrium even when investors have the same preferences. Second, the equilibrium

can be sustained only when the aggregate supply of the skewed asset is small enough that

it is possible to clear the market at the optimal holding s∗. Next, we examine whether our

treatments admit a heterogeneous equilibrium à la Barberis and Huang (2008).

0 s
 ∗ 

Relative share of asset Y

U
ti
lit

y

Figure 2: Prospect theory utility and portfolio share in the skewed asset

In a heterogeneous equilibrium, each investor will hold one of two possible portfolios.

The first portfolio combines the risk-free asset Z and asset X but takes no position at all in

asset Y . The second portfolio combines all three assets. The conditions for a heterogeneous

14



equilibrium are the following:

V (r̂X) = 0 (3)

V (r̂X + s∗r̂Y ) = 0 (4)

V (r̂X + sr̂Y ) < 0 for s ̸= s∗ (5)

V (r̂Y ) < 0 (6)

where r̂j ≡ rj − rf is the excess return on asset j. As shown in Appendix A.4, these

conditions correspond to those derived in Barberis and Huang (2008) when applied to our

setting. Condition (3) requires that the PT value of investing one dollar in asset X must be

zero, otherwise, investors who hold the first portfolio will prefer to change their holdings of

asset X. Condition (4) similarly requires that the PT value of investing one dollar in asset

X and s∗ dollars in asset Y must be zero, otherwise, investors who hold the second portfolio

will prefer to change their holdings of assets X and Y . Condition (5) requires that s∗ is the

optimal fraction of wealth allocated to asset Y relative to the fraction of wealth allocated

to asset X in the second equilibrium portfolio. Condition (6) requires that investing only

in asset Y is a dominated option. Importantly, a heterogeneous equilibrium exists only if

the aggregate supply of asset Y is below a threshold determined by s∗ and asset prices. The

reason is that if the aggregate supply is too large relative to the optimal fraction of wealth

allocated to asset Y , it is not possible to clear the market at the optimal portfolio choices

of the investors.

Following Barberis and Huang (2008) and using their preference parameters, we solve

conditions (3), (4), (5) and (6) numerically for the case of our experiment parameters.15 We

find that only our treatments with a low supply of asset Y (NoSkew-L and Skew-L) admit

a heterogeneous equilibrium.16 In the NoSkew-L treatment, the heterogeneous equilibrium

involves rX = 0.15, rY = 0.03 and s∗ = 0.58. Thus, in this treatment asset X earns positive

expected returns and so does asset Y . This is not surprising because asset Y does not have a

skewed payoff distribution. In the Skew-L treatment, the heterogeneous equilibrium involves

rX = 0.15, rY = −0.04 and s∗ = 0.16. In this treatment, the skewness of asset Y results in

a negative expected return.

Negative returns are a robust prediction of PT for a skewed asset in small supply. To

15The four conditions determine the expected excess returns of the risky assets in equilibrium. To back
out the model’s predictions about returns and prices we need to make an assumption about the return on
the risk-free asset Z. We assume that rf = 0 because there is no time-value of money in our experiment, as
all monetary payoffs are realized at the same moment.

16Different types of equilibria may exist in the other treatments. For instance, in the NoSkew-H treatment,
we find a homogeneous equilibrium where rX = rY = 0.1. Using the parameters of the Skew-H treatment,
we fail to find either a homogeneous or heterogeneous equilibrium.
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Figure 3: Prospect theory parameters and negative returns
Note: This figure shows whether an equilibrium with E(rY ) < 0 exists in the low-supply treatment using
the model of Barberis and Huang (2008). A triangle denotes that the equilibrium exists, a circle denotes
that the equilibrium does not exist. We fix λ = 2.25 in panel (a) and α = 0.88 in panel (b), which are the
values used in Barberis and Huang (2008) and taken from Tversky and Kahneman (1992).
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show this, we solve the model numerically for a broad range of combinations of preference

parameters α, δ and λ that cover standard estimates found in the literature (Abdellaoui

et al., 2008; Harrison and Rutström, 2009; Bruhin et al., 2010). Figure 3 shows the re-

sults. Under probability weighting (δ < 1), an equilibrium where the skewed asset Y earns

negative expected returns can be sustained in the low-supply treatment as long as dimin-

ishing sensitivity (α) and loss aversion (λ) take intermediate values. Importantly, none of

these parameter combinations can sustain a heterogeneous equilibrium in the high-supply

treatment.

PT also predicts that a stronger degree of probability weighting will result in a lower

expected return of asset Y in the heterogeneous equilibrium of the Skewed-L treatment. To

illustrate this prediction, we solve the model for different values of the parameter δ and plot

the equilibrium E(rY ) in Figure 4. A lower δ, which implies a greater overweighting of small

probabilities, results in a higher PY and thus lower (more negative) expected returns earned

by asset Y .
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Figure 4: Probability weighting and expected returns
Note: This figure shows the effect of the probability weighting parameter δ on the expected return of asset
Y in the treatment Skew-L using the model of Barberis and Huang (2008). We fix λ = 2.25 and α = 0.88,
which are the values used in Barberis and Huang (2008) and taken from Tversky and Kahneman (1992).
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3.3 Other models of probability weighting

We have thus far focused on the PT model of Barberis and Huang (2008). However, other

models incorporating probability weighting can produce similar predictions.

3.3.1 Π-CAPM

Driessen et al. (2021) propose an alternative approach for analyzing the effect of skewness

on asset prices under probability weighting. In their model, dubbed Π-CAPM, investors

have mean-variance preferences but weigh probabilities as in PT when computing the mean

and variance of their final wealth. Using the Π-CAPM model of Driessen et al. (2021), it is

possible to show that when the supply of asset Y is small, an increase in skewness will lead

to a higher price of asset Y and may even lead to negative expected returns (depending on

the other parameters of the model). In this respect, their model provides a similar prediction

to Barberis and Huang (2008) for our experiment. A major difference from Barberis and

Huang (2008) is that the Π-CAPM model yields a homogeneous equilibrium, rather than a

heterogeneous equilibrium.

The representative Π-CAPM investor has preferences given by:

EΠ(W )− γvarΠ(W ) (7)

where EΠ(W ) ≡
∑

i πiWi and varΠ(W ) ≡
∑

i πi[Wi − EΠ(W )]2. The Wi terms denote

different realizations of final wealth and the πi terms are decision weights. The decision

weights are obtained from cumulative probabilities as before, but Driessen et al. (2021)

assume the following probability weighting function:

w(q) =



















0, if q = 0

(1− 2a)q + a, if 0 < q < 1

1, if q = 1

with a ∈ [0, 0.5]. Note that this probability weighting function also implies overweighting of

small probabilities. A higher a parameter implies a larger overweighting of small probabili-

ties, while the case a = 0 yields the CAPM. Following Driessen et al. (2021), the equilibrium

price of skewed asset Y is given by:

PY (1 + rf ) = µY + a
SY

σ3
Y

− γNY

[

σ2
Y + a(1− a)

S2
Y

σ4
Y

]

− γNXa
σXσY

√

qY (1− qY )
(8)

where qY is the probability that asset Y pays out the high payoff dY = dY and SY ≡
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E[(dY − E(dY ))
3].
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Figure 5: Predictions of the Π-CAPM model
Note: This figure illustrates the predictions of the model of Driessen et al. (2021) for our experiment.
Panel (a) shows under which parameter combinations the skewed asset Y earns negative expected returns in
markets with high or low supply: rLY denotes the returns earned by asset Y in the treatment Skew-L, while
rHY denotes the returns earned by asset Y in the treatment Skew-H. Panel (b) shows the effect of the model
parameters on the expected return of asset Y in treatment Skew-L. In both panels parameter γ is rescaled
by multiplying it by 10000.

Using the pricing equation, we can analyze for which combinations of preference pa-

rameters γ and a the model predicts the skewed asset Y will earn negative returns in our

experimental markets. We show the results in Figure 5a. As before, in the CAPM, i.e. when

a = 0, asset Y earns positive returns. Under probability weighting, a > 0, negative returns

can occur if the risk-aversion parameter γ is sufficiently low. Moreover, for intermediate

values of γ, the model predicts asset Y will earn negative returns when its supply is small

(E(rLY ) < 0) and positive returns when its supply is large (E(rHY ) > 0), an outcome that

cannot occur under mean-variance-skewness preferences.

Finally, we examine the relationship between probability weighting and the expected

returns of skewed asset Y predicted by the Π-CAPM model. We focus on the case where the

supply of asset Y is small and compute E(rY ) for different values of the parameters a and

γ. The results are shown in Figure 5b. In general, the effect of probability weighting on

E(rY ) is non-monotonic. However, for low values of the risk-aversion parameter γ, stronger

probability weighting leads to a lower expected return. Overall, the Π-CAPM model of
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Driessen et al. (2021) provides qualitatively similar predictions as the original PT model of

Barberis and Huang (2008) for the purpose of our experiment.

3.3.2 Rank-Dependent Utility

We also examine the pricing of skewed assets within a rank-dependent utility framework

(RDU henceforth; Quiggin, 1982). As in PT, RDU incorporates probability weighting to

investors’ preferences; however, unlike PT, it does not include a reference point.

Under RDU, we show that when the supply of asset Y is small, an increase in skewness

will lead to negative expected returns (see Appendix A.3). In this respect, RDU provides

a similar prediction to Barberis and Huang (2008) for our experiment. A major difference

from Barberis and Huang (2008) is that the RDU model yields a homogeneous equilibrium,

rather than a heterogeneous equilibrium. Our results suggest that probability weighting is

sufficient to produce negative returns of the skewed asset in low supply in the PT model of

Barberis and Huang (2008), while loss aversion is a necessary ingredient for the existence of

a heterogeneous equilibrium.

The representative RDU investor has preferences given by:

RDU(W ) =
4
∑

i=1

πiu(Wi) (9)

where Wi terms denote different realizations of final wealth, u(.) is a concave utility function

(e.g, xα with α ∈ (0, 1)), and πi terms are decision weights. The decision weights are obtained

from cumulative probabilities as before. For the RDU specification to be well defined over

final wealth (see e.g., Driessen et al., 2021), we assume a neo-additive probability weighting

function:17

w(p) = (1− ρ)p+
ρ− η

2
(10)

where ρ ∈ (0, 1) and η ∈ (−ρ, ρ).

The parameters ρ and η are the indexes of insensitivity and pessimism (e.g, Abdellaoui

et al., 2011). The insensitivity parameter produces an inverse S-shape in the probability

weighting function (e.g, Gonzalez and Wu, 1999), and is our main parameter of interest

when assessing the effect of probability weighting on the expected return of asset Y.

We solve the model numerically for a broad range of combinations of preference parame-

17The weights assigned to the two intermediate states, (dX , dY ) and (dX , dY ), depend on whether the final
wealth in state (dX , dY ) is greater or less than the final wealth in state (dX , dY ). However, in our experiment,
we do not know which intermediate state corresponds to higher wealth. Neo-additive weighting function has
the particularity to provide weights for the two intermediate states that are independent to what state is
associated with higher wealth (see e.g., Driessen et al., 2021).
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ters α, η and ρ that cover standard estimates found in the literature (Abdellaoui et al., 2008;

Harrison and Rutström, 2009; Bruhin et al., 2010). Figure 6 shows the results. In Figure 6a,

we vary ρ ∈ [0, 1] and η ∈ [−1, 1], while keeping α = 0.88 (Tversky and Kahneman, 1992).

In figure 6b, we vary ρ ∈ [0, 1] and α ∈ [0.2, 1], while keeping η = 1/6 (e.g, Gonzalez and

Wu, 1999).18 The values of all the other parameters (NX , NY , dX , dX , dY , dY , q) are directly

taken from our experimental setup.

In the absence of probability weighting (η = 0 and ρ = 0), asset Y earns positive returns,

reflecting the standard CAPM prediction (Figure 6a).

Under probability weighting, ρ ̸= 0 and η ̸= 0, asset Y can yield negative returns if

the likelihood-insensitivity parameter ρ is high and/or the pessimism parameter η is low

(Figure 6a). Importantly, for a set of parameter values that have been validated empirically

(α = 0.88, ρ = 1/2, η = 1/6; Tversky and Kahneman, 1992; Gonzalez and Wu, 1999), the

model predicts asset Y will earn negative returns when its supply is small (E(rLY ) < 0) and

positive returns when its supply is large (E(rHY ) > 0) (Figure 6a). Interestingly, we note

that in the presence of probability weighting, asset Y can only produce negative returns if

the utility function is not too concave (Figure 6b).

RDU also predicts that a stronger degree of probability weighting will result in a lower

expected return of asset Y . To illustrate this prediction, we solve the model for different

values of the insensitivity parameter ρ and pessimism parameter η, and plot the equilibrium

value of E(rY ) in Figure 7. A higher insensitivity ρ and/or a lower pessimism η, which

implies a greater overweighting of small probabilities, results in a higher PY and thus lower

(more negative) expected returns earned by asset Y .

Finally, under RDU, only a homogeneous equilibrium exists in our experimental setup.

Due to the absence of loss aversion, an infinitesimal supply of a skewed asset tends to be

systematically overpriced, as RDU valuation of final wealth is increasing and concave over

small supplies of the skewed asset. This rules out the possibility of an equilibrium with

nonunique (heterogeneous) global optima in which some RDU decision-makers do not hold

skewed assets.19

18For the weighting function, a pessimism index of η = 1
6 and an insensitivity index of ρ = 1

2 yield a
crossing-over point at p = 1

3 = w
(

1
3

)

, consistent with the standard findings in the literature (e.g., Gonzalez
and Wu, 1999).

19More generally, under RDU, the valuation of final wealth remains concave in the supply of skewed assets,
leading to an equilibrium with a unique (homogeneous) global optimum. By contrast, in PT models, the
presence of loss aversion implies that the valuation of final wealth, relative to a reference point, can be
decreasing and convex when the skewed asset is in small supply thus leading to underpricing. This supports
the possibility of an equilibrium with nonunique (heterogeneous) global optima as in Barberis and Huang
(2008).
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Figure 6: Predictions of the RDU
Note: This figure illustrates the predictions of RDU for our experiment. Panel (a) shows, for α = 0.88

following Tversky and Kahneman (1992) and Barberis and Huang (2008), the parameter combinations (η, ρ)

of the probability weighting function for which the skewed asset Y earns negative expected returns in

markets with high or low supply: rLY denotes the returns earned by asset Y in the treatment Skew-L, while

rHY denotes the returns earned by asset Y in the treatment Skew-H. Panel (b) shows, for η = 1/6, the

parameter combinations of utility curvature (α) and insensitivity (ρ) for which the skewed asset Y earns

negative expected returns. The values of all the other parameters (NX , NY , dX , dX , dY , dY , q) are directly

taken from our experimental setup.

22



−0.1

0.0

0.1

0.00 0.25 0.50 0.75 1.00
Insensitivity: ρ

E
x
p

e
c
te

d
 r

e
tu

rn
 o

f 
a

s
s
e

t 
Y

(a)

−0.2

−0.1

0.0

0.1

−0.50 −0.25 0.00 0.25 0.50
Pessimism: η

E
x
p

e
c
te

d
 r

e
tu

rn
 o

f 
a

s
s
e

t 
Y

(b)

Figure 7: Probability weighting and expected returns
Note: This figure shows the effect of the probability weighting parameters (ρ, η) on the expected return

of asset Y in the treatment Skew-L under RDU. We fix α = 0.88 following Tversky and Kahneman (1992)

and Barberis and Huang (2008). In Panel (a), we set pessimism at η = 1/6 and vary insensitivity ρ. In

Panel (b), we set insensitivity at ρ = 1/2 and vary pessimism η ∈ (−ρ, ρ) = (−1/2, 1/2). The specific

combination (ρ, η) = (1/2, 1/6) leads to a crossing-over point at p = 1/3 = w(1/3), which is consistent

with standard results in the literature (Gonzalez and Wu, 1999). The values of all the other parameters

(NX , NY , dX , dX , dY , dY , q) are directly taken from our experimental setup.

3.4 Hypotheses

We summarize the implications of EUT and probability weighting models regarding the

pricing of the skewed asset in our experimental design in three hypotheses. In the first

hypothesis, we establish a prediction that is common to all models accounting for asset

skewness. According to all these models, the positively skewed asset should be priced higher

than the non-skewed asset, regardless of the relative supply of the assets.

Hypothesis 1. (Skewness & Asset Prices)

Asset Y will earn lower expected returns in the Skew than in the NoSkew treatments, whether

its supply is low or high.

Next, we consider specific predictions of each type of model. In particular, EUT models

imply that the return of the skewed asset is expected to be positive when in small supply

(see Figure 1). More specifically, as shown in Section 3.1, a third-order approximation of

expected utility implies that the return on the skewed asset cannot be negative when in small

supply if it is positive when in high supply. If rejected, our hypothesis leads to a falsification

of EUT. We state this prediction in Hypothesis 2 below.
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Hypothesis 2. (EUT & Skewness)

The expected return on asset Y will not be negative in Skew-L if it is positive in Skew-H.

By contrast with EUT models, in a plausible range of the preference-parameter space,

PT predicts that the expected return of the skewed asset will be negative when in small

supply (see Figures 3 and 5a). A similar prediction is obtained for the two other models of

probability weighting (Π-CAPM and RDU, see Section 3.3). We summarize this prediction

in Hypothesis 3i. This prediction follows from the PT model of Barberis and Huang (2008)

as well as from Π-CAPM and RDU.

In Hypothesis 3ii, we go one step beyond establishing the consistency of our data with

PT models by directly testing their underlying mechanism. To that end, we test the predic-

tion that the return of the skewed asset, when in small supply, will decrease when market

participants exhibit higher degrees of overweighting of small probabilities (see Figures 4, 5b

and 7).

Hypothesis 3. (Probability Weighting & Skewness)

i) The expected return on asset Y will be negative in Skew-L, even if it is positive in Skew-H.

ii) The expected return on asset Y will be lower in markets in which the overweighting of

small probabilities is more pronounced.

4 Results

4.1 Asset Returns

We begin our empirical analysis by noting some broad patterns in expected returns across

securities. We compute asset prices at the market period level, by taking the average of the

transaction prices across all trades in a period (each trade is for one unit). We then compute

the expected return for asset i ∈ {X, Y, Z} in period n of session s as: E(risn) ≡
E(di)
Pisn

− 1,

where Pisn is the price of asset i in period n of session s and di is the payoff of asset i.

Figure 8 shows the means and 95% confidence intervals of the expected returns earned by

the three assets for all the treatments. In the NoSkew-H treatment, where assets X and Y

have the same non-skewed marginal distribution of payoffs and the same aggregate supply,

they earn similar expected returns, equal to 24% on average (p-value = 0.78 using a paired

Wilcoxon signed rank test). This is reassuring and consistent with all the models.

In all other treatments, where asset Y has either a more skewed distribution or a lower

supply than asset X, Y earns lower returns than X (p-values < 0.001 using paired Wilcoxon

signed rank tests for each of these treatments). We also note that the risk-free asset Z

24



earns small but positive returns in line with previous CAPM experiments (e.g., Bossaerts

and Plott, 2004).20

In the next section, we directly test our three hypotheses.
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Figure 8: Expected returns (means and 95% CI)

4.2 Tests of the Hypotheses

We proceed by testing our hypotheses using the following regression specification:

rY sn = β0 + β1Skew Lsn + β2Skew Hsn + β3NoSkew Lsn + ηs + ϵsn (11)

where rY sn is the expected return earned by asset Y in period n of session s. The variables

Skew L, Skew H , and NoSkew L are indicators for the corresponding treatments. We

denote by ηs session random effects, and by ϵsn the error term, which is clustered at the

session level. Column (1) of Table 5 shows the estimation results for this regression.

20This result likely reflects people’s willingness to borrow in order to execute trades in other assets.
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Asset Y return
Dependent variable

(1) (2) (3)

Skew-L -0.29∗∗∗ -0.94∗∗∗ -0.94∗∗∗

(0.03) (0.31) (0.31)

Skew-H -0.16∗∗∗ -0.29 -0.29
(0.03) (0.34) (0.35)

NoSkew-L -0.18∗∗∗ -0.54 -0.54
(0.04) (0.41) (0.42)

δ -0.53 -0.75
(0.83) (0.80)

Skew-L × δ 1.30∗∗ 1.30∗∗

(0.56) (0.57)

Skew-H × δ 0.29 0.29
(0.65) (0.66)

NoSkew-L × δ 0.74 0.74
(0.76) (0.77)

Period -0.01 -0.01
(0.00) (0.00)

α 0.08
(0.30)

CRT -0.01
(0.03)

Financial literacy -0.12
(0.08)

Gender (% women) 0.14
(0.22)

Constant 0.24∗∗∗ 0.55 0.86
(0.05) (0.41) (0.67)

p-value: Skew-L vs NoSkew-L <0.001 0.072 0.076
p-value: Skew-H vs NoSkew-H <0.001 0.743 0.746
p-value: Skew-L + Constant = 0 0.034 0.253 0.857
p-value: Skew-H + Constant = 0 0.001 0.524 0.254
p-value: Skew-L × δ vs NoSkew-L × δ 0.197 0.157
p-value: Skew-H × δ vs NoSkew-H × δ 0.930 0.931
N 169 169 169
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Asset Y return and probability weighting

Results for Hypothesis 1. Asset Y earns lower returns on average in the Skew treatments

than in the NoSkew treatments, whether its supply is low or high. The returns of asset Y

decrease significantly from 6% in the NoSkew-L treatment to -5% in the Skew-L treatment

(Coefficient test: Skew-L vs NoSkew-L, p-value < 0.001, see bottom of Table 5 for regression
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(1)). Similarly, returns for asset Y decrease significantly from 24% in NoSkew-H to 8% in

Skew-H (Coefficient test: Skew-H vs NoSkew-H, p-value < 0.001, see regression (1)). Over-

all, our data support Hypothesis 1 according to which asset Y will earn lower returns in

Skew treatments.

Results for Hypotheses 2 and 3i . In contrast with our second hypothesis, the return on

asset Y is negative and significant in Skew-L (-5%, Coefficient test: Skew-L + Constant = 0,

p-value = 0.034, see bottom of Table 5 for regression (1)) while being positive and significant

in Skew-H (8%, Coefficient test: Skew-H + Constant = 0, p-value = 0.001).21

Our results are inconsistent with the asset pricing predictions derived from a third-order

approximation of expected utility, the mean-variance-skewnes model, leading us to reject

Hypothesis 2. Instead, this finding is consistent with PT models and other probability

weighting models, as summarized in Hypothesis 3i.

Results for Hypothesis 3ii To test for the effect of probability weighting on returns,

we first estimate the degree of probability weighting for each participant using data on

multiple-price list choices. Our main approach is to estimate the parametric specification of

the probability weighting function used in Tversky and Kahneman (1992) and Barberis and

Huang (2008):

w(q) =
qδ

[qδ + (1− q)δ]1/δ

The probability weighting parameter δ is estimated jointly with the diminishing sensitivity

parameter α. The estimation procedure is further discussed in Appendix B.

To obtain an index of probability weighting at the market level, we then take the median

value of the individual estimates in a given session. We use the median δ because it is

largely unaffected by the presence of individual outliers, but our results are qualitatively

similar if we adopt alternative measures such as using the average δ of a session. Our

session-level measures of probability weighting range between 0.44 and 0.59 (see Table 7 in

Appendix B). To illustrate the patterns in probability weighting implied by these estimates,

we plot the probability weighting functions for all the thirteen experimental sessions in

Figure 9. In line with PT assumptions and previous estimates (Quiggin, 1982; Tversky and

Kahneman, 1992; Prelec, 1998; Gonzalez and Wu, 1999; Abdellaoui, 2000; Bruhin et al., 2010;

l’Haridon and Vieider, 2019), probabilities under 0.3 are systematically overweighted while

larger probabilities are underweighted leading to an inverse S-shaped probability weighting

21Furthermore, the proportion of periods in which asset Y earns negative expected returns is significantly
higher in the Skew-L treatment (66.7%) compared to the Skew-H treatment (17.9%) (Mann-Whitney test,
p-value< 0.001).
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function. We also observe heterogeneity in probability weighting across sessions, allowing us

to test Hypothesis 3ii.
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Figure 9: Estimated probability weighting functions

Note: This figure plots the probability weighting functions for all the thirteen experi-

mental sessions. Each curve is the graph of the function w(q) = qδ

[qδ+(1−q)δ]1/δ
where δ

is the session-level median of the individual δ estimates.
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Figure 10: Returns of asset Y and probability weighting

Note: Each panel of this figure is a scatter plot of the session- and period-level expected

return of asset Y against the session-level median probability weighting parameter δ.

The grey line is a regression line.

In line with Hypothesis 3ii, our data show that the more traders overweight small prob-

abilities in a session, that is the lower the session median δ, the more negative is the return

of asset Y in treatment Skew-L. This is illustrated in Figure 10, where we plot the expected

returns earned by asset Y against the session-level probability weighting index. To formally

test Hypothesis 3ii, we use an augmented version of our previous regression specification in
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equation (11):

rY sn =β0 + β1Skew Lsn + β2Skew Hsn + β3NoSkew Lsn + β4δsn+

β5Skew Lsn × δsn + β6Skew Hsn × δsn + β7NoSkew Lsn × δsn+

β8Periodsn + β9Csn + ηs + ϵsn

(12)

This specification includes the session-level index of probability weighting δ and its inter-

actions with the treatment indicators. We also control for period number (Period), and

a vector of session controls (C) obtained by aggregating individual characteristics of the

participants in a session. We control for the period number to assess any potential effects of

learning during the experiment, as experimental markets often show that mispricing tends

to decrease with repeated experiments (Smith et al., 1988; Dufwenberg et al., 2005; Haruvy

et al., 2007; Palan, 2013). The vector of session controls include risk sensitivity (α), CRT

and financial literacy. We include variables that capture traders’ cognitive abilities and fi-

nancial knowledge, as evidence suggests that experimental markets with traders scoring high

on these dimensions typically exhibit lower levels of mispricing (see review in Bosch-Rosa

and Corgnet, 2022). We also include gender, which has also been shown to impact pricing

in previous experimental asset markets (Cueva and Rustichini, 2015; Eckel and Füllbrunn,

2015). All these variables are calculated as the median of individual values in each session.

The controls also include the gender composition of the market, defined as the proportion

of women in each session.

We show the estimation results in columns (2) and (3) of Table 5. The coefficient on

Skew L × δ is positive and significant, implying that more overweighting (lower δ) leads

to lower returns. The fact that the interaction term Skew H × δ is not significant is

consistent with our hypothesis, which is derived from the case studied in Barberis and

Huang (2008) where the supply of the skewed asset is low. In line with PT, the interaction

term is not significant when the Y asset is not skewed (NoSkew L × δ). In Appendix D,

we report additional robustness checks using alternative measures of probability weighting

at the session level, rather than the median of individual estimates. We also use a semi-

parametric estimation of probability weights following the method proposed by Kpegli et al.

(2023). These robustness checks confirm our previous results. Overall, our results support

PT predictions captured in Hypotheses 3i and 3ii.

4.3 Portfolio holdings

While our main focus is on testing predictions about asset prices, the alternative theories we

discussed above also provide distinct implications regarding the composition of individual
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Figure 11: Histograms of the portfolio share in Y relative to X across treatments
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portfolios. Assuming investors have identical preferences, both the CAPM and the mean-

variance-skewness model predict all investors will hold the same portfolio of risky assets, i.e.

the market portfolio. This prediction is robust to preference heterogeneity in the CAPM,

while individual differences in preferences can lead to heterogeneity in portfolio holdings

according to the mean-variance-skewness model (see for example Mitton and Vorkink, 2007).

A distinct prediction of the prospect theory model of Barberis and Huang (2008) is that, as

shown in Section 3.2, investors in the Skew-L and NoSkew-L treatments will hold one of two

candidates portfolios: the first one includes both assets X and Y, while the second takes no

position at all in asset Y . We refer to an allocation with no holdings of asset Y as a corner

portfolio.

We analyze data on portfolio composition by computing the final portfolio share in as-

set Y relative to asset X attained by each trader i at the end of each market period (i.e.

si ≡
PY nY i

PXnXi
). In computing these portfolio shares we evaluate asset holdings at the average

prices in the period. Figure 11 plots the distribution of the relative portfolio share in Y

across our four treatments. We observe large differences in the frequency of corner portfolios

across treatments. Corner portfolios represent only 3% and 6% of the portfolios in NoSkew-H

and Skew-H while representing 47% of final portfolios in each of the low-supply treatments.

We test whether these differences are statistically significant using Mann-Whitney tests. We

treat the period-level proportions of corner portfolios as observations. For each skewness

level, the difference between the low-supply and high-supply treatments is statistically sig-

nificant (all p-values < 0.001). This finding is qualitatively consistent with the prospect

theory model of Barberis and Huang (2008).

Restricting attention to portfolios that invest a positive share in both risky assets, Fig-

ure 11 shows that there is a large heterogeneity in final asset holdings in every treatment.

Such variability is consistent with previous market experiments and reflects unobserved het-

erogeneity in preferences or decision-making noise (see Bossaerts et al., 2007). Our exper-

iment allows us test how such variability in asset positions varies with skewness in asset

payoffs. We find that the standard deviation in the relative share of asset Y is 2.4 in

Skew-H, 2.1 in NoSkew-H, 0.352 in Skew-L and 0.229 in NoSkew-L. For each supply level,

the difference between the Skew and NoSkew treatments is statistically significant, using

Mann-Whitney tests on period-level standard deviations (p-value < 0.001 for the high sup-

ply treatments and p-value= 0.005 for the low supply treatments). Thus, skewness in asset

payoffs increases portfolio heterogeneity.
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5 Conclusion

A new wave of asset pricing models has emerged in recent years featuring probability weight-

ing to account for numerous financial anomalies. These models extend both the standard

CAPM and its variant based on mean-variance-skewness preferences. In line with both EUT

and probability weighting models featuring skewness pricing, we find that skewed assets

systematically earn lower returns.

By taking advantage of our experimental setup, which varies both the level of skewness

of risky assets and their relative supply, we proceed to test the distinct predictions of the

competing models. In particular, we show that the negative return of skewed assets in low

supply is incompatible with EUT models, while it is consistent with PT models and, more

generally, with models incorporating probability weighting.

Furthermore, we directly show that probability weighting plays a critical role in explaining

the negative returns of skewed assets. Direct evidence on the underlying mechanisms helps

rule out potential alternative explanations, such as those suggesting that skewness is priced

because it changes the likelihood of incurring a loss (Holzmeister et al., 2020). These results

are important because a necessary condition for the widespread adoption of an alternative

model to CAPM is evidence of their underlying behavioral mechanism (Hirshleifer, 2015).

Absent this evidence, it would be difficult to discriminate between potentially countless

alternative models.

Prospect theory not only explains asset prices across our treatments, but it is also qual-

itatively consistent with the incidence of corner solutions in the traders’ portfolio choices.

However, data on portfolio holdings reveal a degree of individual heterogeneity that is dif-

ficult to reconcile with homogeneous preferences. This fact suggests that it will be critical

to develop models with heterogeneous prospect theory preferences. One promising approach

could be to adapt the noisy demand approach of Bossaerts et al. (2007) to prospect theory.

We hope our study will stimulate a new wave of empirical research that tests the precise

and distinct implications of behavioral models.
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Appendix

A Proofs

A.1 CAPM

Assume the representative investor has utility:

U(W ) = E(W )−
1

2
γvar(W )

Denoting by nj the demand of asset j ∈ {X, Y }, final wealth is:

W = Rf × (W 0 − nXPX − nY PY ) + nXdX + nY dY

where Rf = 1 + rf .

Using the fact that the two assets are independent, utility can be rewritten as:

U(W ) = W 0Rf + nX(µX − PXRf ) + nY (µY − PYRf )−
1

2
γn2

Xσ
2
X −

1

2
γn2

Y σ
2
Y

The first-order condition for nj is:

µj − PjRf − γnjσ
2
j = 0

Denoting by Nj the aggregate supply of asset j, the equilibrium price of asset j is:

Pj =
µj − γNjσ

2
j

Rf

Finally, the expected return on asset j is:

E(rj) ≡
µj − Pj

Pj

=
µjrf + γNjσ

2
j

µj − γNjσ2
j

A.2 Mean-Variance-Skewness model

Assume the representative investor has utility:

U(W ) = E(W )−
1

2
ϕvvar(W ) +

1

3
ϕsS(W )
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where ϕv > 0 and ϕs > 0 capture variance aversion and skewness seeking, and S(W ) ≡

E[(W − E(W ))3].

Denoting by nj the demand of asset j ∈ {X, Y }, final wealth is:

W = Rf × (W 0 − nXPX − nY PY ) + nXdX + nY dY

Using the facts that the two assets are independent and the skewness of asset X is zero,

utility can be rewritten as:

U(W ) = W 0Rf + nX(µX − PXRf ) + nY (µY − PYRf )−
1

2
ϕvn

2
Xσ

2
X −

1

2
ϕvn

2
Y σ

2
Y +

1

3
ϕsSY n

3
Y

where SY ≡ E[(dY − E(dY ))
3.

The first-order condition for nY is:

µY − PYRf − ϕvnY σ
2
Y + ϕsSY n

2
Y = 0

Denoting by NY the aggregate supply of asset Y , the equilibrium price of asset Y is:

PY =
µY − ϕvNY σ

2
Y + ϕsSYN

2
Y

Rf

Finally, the expected return on asset Y is:

E(rY ) =
rfµY + ϕvσ

2
YNY − ϕsSYN

2
Y

µY − ϕvσ2
YNY + ϕsSYN2

Y

Using these expressions we can prove the following theorem.

Theorem 1. If skewed asset Y earns positive returns when its supply is large, then it cannot

earn negative returns when its supply is small

Proof. Denote by ρ(n) the expected return on asset Y as a function of the asset’s aggregate

supply:

ρ(n) ≡
rfµY + ϕvσ

2
Y n− ϕsSY n

2

µY − ϕvσ2
Y n+ ϕsSY n2

From this expression it is easy to see that:

ρ(0) = rf ≥ 0 (13)

40



Moreover, the first derivative of ρ(n) is:

dρ(n)

dn
=

µY (rf + 1)
(

ϕvσ
2
Y − 2ϕsSY n

)

[

µY − ϕvσ2
Y n+ ϕsSY n2

]2

Then we have:
dρ(n)

dn
≥ 0 ⇔ n ≤

ϕvσ
2
Y

2ϕsSY

≡ n̂ (14)

Now consider two supply levels nH > nL and ρ(nH) > 0.

Consider the case where nL < n̂. Because of (13) and (14), ρ(n) > 0∀n ∈ [0, n̂]. So

ρ(nL) > 0.

Next consider the case where n̂ < nL < nH . Because of (14), function ρ(n) is decreasing

in this interval. So, ρ(nL) > ρ(nH). Since ρ(nH) > 0, it must also be ρ(nL) > 0.

A.3 RDU model

The no-skewed and skewed assets X and Y are given by: Y = (dY , dY ; q, 1 − q) and X =

(dX , dX ; 0.5, 0.5). The final wealth W is given by

W = (W1, 0.5(1− q);W2, 0.5(1− q);W3, 0.5q;W4, 0.5q)

with

W1 = (W 0 − nXPX − nY PY )(1 + rf ) + nXdX + nydY

W2 = (W 0 − nXPX − nY PY )(1 + rf ) + nXdX + nydY

W3 = (W 0 − nXPX − nY PY )(1 + rf ) + nXdX + nydY

W4 = (W 0 − nXPX − nY PY )(1 + rf ) + nXdX + nydY

RDU investor evaluates the final wealth as follows:

RDU(W ) =
4
∑

i=1

πiu(Wi)

with π1 = 1 − 0.5(1 − ρ)(1 + q) − ρ−η
2
, π2 = 0.5(1 − ρ)(1 − q), π3 = 0.5(1 − ρ)q, and π4 =

0.5(1− ρ)q + ρ−η
2
.

Theorem 2. Assume RDU investor exhibits w(q) > q, w(0.5) ≤ 0.5, and concave utility

function. Hence, when the supply of asset Y is small, an increase in skewness (small q) will

lead to negative expected returns.
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Proof. The first-order conditions for nX and nY are:

∂RDU

∂nX

= (dX−PX(1+rf ))
[

π4u
′(W4) + π2u

′(W2)
]

+(dX−PXRf )
[

π3u
′(W3) + π1u

′(W1)
]

= 0

∂RDU

∂nY

= (dY −PY (1+rf ))
[

π4u
′(W4) + π3u

′(W3)
]

+(dY −PYRf )
[

π2u
′(W2) + π1u

′(W1)
]

= 0

At the equilibrium where nX = NX and nY = NY , from first-order conditions, the prices

of assets X and Y satisfied the equations:

PX(1 + rf ) =
dX
[

π4u
′(W4) + π2u

′(W2)
]

+ dX
[

π3u
′(W3) + π1u

′(W1)
]

π1u′(W1) + π2u′(W2) + π3u′(W3) + π4u′(W4)
(15)

PY (1 + rf ) =
dY
[

π4u
′(W4) + π3u

′(W3)
]

+ dY
[

π2u
′(W2) + π1u

′(W1)
]

π1u′(W1) + π2u′(W2) + π3u′(W3) + π4u′(W4)
(16)

Note that the outcomes of the assets can be reformulated in terms of their means (µX

and µY ) and standard deviations (σX and σY ).

dY = µY + σY

√

1− q

q

dY = µY − σY

√

q

1− q

dX = µX + σX

dX = µX − σX

Hence, the prices of assets X and Y satisfied the equations:

PX(1 + rf ) = µX + σX

[

π4u
′(W4) + π2u

′(W2)
]

−
[

π3u
′(W3) + π1u

′(W1)
]

π1u′(W1) + π2u′(W2) + π3u′(W3) + π4u′(W4)

PY (1 + rf ) = µY + σY

√

1− q

q

[

π4u
′(W4) + π3u

′(W3)
]

−

√

q

1− q

[

π2u
′(W2) + π1u

′(W1)
]

π1u′(W1) + π2u′(W2) + π3u′(W3) + π4u′(W4)
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Denote by s = 1− ρ and c = ρ−η
2
. We then have the following limits:

lim
NY −→0

PX(1+rf ) = µX+σX

w(0.5)u′

(

(W0 −NXPX)(1 + rf ) +NXdX

)

− (1− w(0.5))u′(
(

(W0 −NXPX)(1 + rf ) +NXdX
)

)

w(0.5)u′

(

(W0 −NXPX)(1 + rf ) +NXdX

)

+ (1− w(0.5))u′(
(

(W0 −NXPX)(1 + rf ) +NXdX
)

)

lim
NY −→0

PY (1+rf ) = µY +σY

c

√

1− q

q
u′

(

(W0 −NXPX)(1 + rf ) +NXdX

)

− (1− s− c)

√

q

1− q
u′

(

(W0 −NXPX)(1 + rf ) +NXdX
)

w(0.5)u′

(

(W0 −NXPX)(1 + rf ) +NXdX

)

+ (1− w(0.5))u′(
(

(W0 −NXPX)(1 + rf ) +NXdX
)

)

As w(0.5) = 0.5s+c ≤ 0.5 and u(.) concave implies u′
(

(W0 −NXPX)(1 + rf ) +NXdX
)

>

u′

(

(W0 −NXPX)(1 + rf ) +NXdX

)

, it turns out that

lim
NY −→0

PX(1 + rf ) < 0.5dX + 0.5dX ≡ µX

lim
(NY ,q)−→(0,0)

PY (1 + rf ) > qdY + (1− q)dY ≡ µY

As result, when the supply of asset Y is small (NY small), an increase in skewness (small

q) will lead to negative expected returns.

A.4 Heterogeneous equilibrium in prospect theory

The investor’s preferences are defined over the gain or loss relative to the final wealth that

could have been obtained investing only in the risk-free asset:

Ŵ ≡ W − (1 + rf )W
0

where we denote by W 0 and W initial and final wealth respectively.

The preferences of the investor are represented by:

V (Ŵ ) =
n
∑

k=−m

πkv(Ŵk)

The function v(·) is the value function and the πk terms are decision weights. The value

function is:

v(x) =







xα, if x ≥ 0

−λ(−x)α, if x < 0

In a heterogeneous equilibrium, each investor will hold one of two possible portfolios.
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Portfolio A combines the risk-free asset Z and asset X but takes no position at all in asset

Y . Denote by θ the share of this portfolio invested in asset X. Portfolio B combines all three

assets and we denote by τX and τY the shares of this portfolio in assets X and Y respectively.

We derive the equilibrium conditions of Barberis and Huang (2008) in our setting (the

main difference is that asset X replaces the market portfolio of their model).

Consider first an investor with portfolio A. For such an investor, final wealth is W =

W0[(1− θ)Rf + θRX ] and so Ŵ = W0θr̂X , where r̂j ≡ rj − rf is the excess return on asset j.

Portfolio A investors will choose a finite a positive θ only if V (Ŵ ) = 0, that is V (W0θr̂X) = 0.

This implies that Wα
0 θ

αV (r̂X) = 0 ⇔ V (r̂X) = 0, that is condition (3).

Next, consider an investor who holds portfolio B. For such an investor, final wealth is

W = W0[(1− τX − τY )Rf + τXRX + τYRY ]. So Ŵ = W0(τX r̂X + τY r̂Y ) = W0τX(r̂X + sr̂Y ),

where s ≡ τY
τX
. We denote by s∗ the investor’s optimal choice. Portfolio B investors will

choose a finite a positive τX only if V (Ŵ ) = 0, that is V (W0τX(r̂X + s∗r̂Y )) = 0. This

implies that Wα
0 τ

α
XV (r̂X + s∗r̂Y ) = 0 ⇔ V (r̂X + s∗r̂Y ) = 0, that is condition (4). To ensure

that s∗ is really the optimal choice, it must be V (r̂X + sr̂Y ) < 0 for s ̸= s∗, that is condition

(5). Finally, holding a portfolio combining only the risk-free asset and asset Y must also be

sub-optimal, leading to V (r̂Y ) < 0, i.e. condition (6).

B Probability weighting estimation

Denote by ce,x, y, and q respectively the values of certainty equivalent, the high outcome

x, the small outcome y, and the probability. We use the certainty equivalent data to estimate

power utility and one-parameter probability weighting:

cel =

(

(xα
l − yα

l )
qδ
l

(

qδ
l + (1− ql)δ

)
1

δ

+ yα
l

)
1

α

+ el (17)

where e is the error term, l is the lth line in ce,x,y and e; α the utility parameter and δ

the probability weighting parameter. We assume that the error term is normally distributed

with mean 0 and heteroscedastic variance σl = σ|xl − yl|. We then estimate α, δ and σ by

maximum likelihood method.

Alternatively to (17), we estimate the probability weight δq = w(q) associated to each

probability q ∈ Q = {0.025, 0.05, 0.25, 0.5} following the specification of Abdellaoui et al.

(2008) and Kpegli et al. (2023):
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cel =

(

(xα
l − yα

l )
∑

q∈Q

δkI
k
l + yα

l

)
1

α

+ el (18)

with Ik the dummy variable for the probability pk.

Parametric Semi-parametric

Session α δ α w(0.025) w(0.05) w(0.25) w(0.50)

1 1.19 0.50 0.85 0.20 0.22 0.32 0.45

2 1.10 0.46 0.96 0.18 0.16 0.29 0.41

3 1.13 0.55 1.00 0.11 0.10 0.32 0.42

4 1.48 0.53 1.08 0.24 0.26 0.31 0.36

5 1.20 0.56 0.73 0.18 0.22 0.37 0.54

6 1.03 0.47 0.94 0.19 0.18 0.29 0.45

7 1.39 0.55 0.88 0.18 0.22 0.36 0.53

8 1.08 0.44 0.74 0.29 0.24 0.31 0.41

9 1.12 0.53 0.93 0.19 0.21 0.32 0.45

10 1.08 0.50 0.80 0.16 0.15 0.36 0.38

11 1.10 0.59 0.84 0.22 0.24 0.40 0.49

12 1.14 0.53 0.55 0.30 0.32 0.43 0.55

13 1.26 0.46 0.85 0.29 0.31 0.41 0.47

Table 6: Median of individual estimates of risk preference at the session level

C Descriptive statistics

δ α CRT Financial Gender

literacy (% women in the session)

Mean 0.52 1.18 1.77 2.85 0.44

Min 0.44 1.03 1 2 0.1

max 0.59 1.48 3 3 0.6

Standard deviation 0.04 0.12 0.67 0.30 0.14

Median 0.53 1.13 1.5 3 .5

Table 7: Descriptive statistics
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Table 8: Correlation matrix ( using session level medians)

δ α CRT Financial Gender

literacy (% women)

δ 1.000

α 0.269 1.000

CRT -0.339 -0.161 1.000

Financial literacy -0.041 -0.523∗ 0.205 1.000

Gender (% women) 0.131 -0.474 -0.107 -0.305 1.000

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9: Correlation matrix (individual level)

δ α CRT Financial Gender

literacy (Dummy woman)

δ 1.000

α 0.042∗ 1.000

CRT 0.106∗∗∗ -0.171∗∗∗ 1.000

Financial literacy 0.077∗∗∗ -0.122∗∗∗ 0.227∗∗∗ 1.000

Gender (dummy women) -0.032 0.139∗∗∗ -0.204∗∗∗ -0.074∗∗∗ 1.000

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

D Additional robustness checks for Hypothesis 3ii

This section demonstrates the robustness of the results in Table 5 with respect to the ag-

gregation method of probability weighting at the session level and the specification of the

probability weighting function.

Robustness to various probability weighting aggregation methods. Table 10

provides regression estimates in which we used minimum, maximum, and mean of individ-

ual probability weighting parameters (δ) instead of the median (as reported in Table 5.

The interaction between Skew L and δ continues to be positive and significant across all

aggregation methods.
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Returns Returns Returns
(Min δ) (Max δ) (Mean δ)

Skew-L -0.51∗∗∗ -0.30∗∗∗ -0.39∗∗∗

(0.07) (0.05) (0.08)

Skew-H -0.30∗∗∗ -0.17∗∗∗ -0.22∗∗∗

(0.08) (0.04) (0.07)

NoSkew-L -0.47∗∗∗ -0.17∗∗∗ -0.21∗

(0.10) (0.06) (0.11)

δ -0.56∗∗∗ -0.01 -0.13
(0.21) (0.01) (0.12)

Skew-L × δ 0.81∗∗∗ 0.02∗∗ 0.21∗∗

(0.18) (0.01) (0.10)

Skew-H × δ 0.51∗ 0.02∗∗ 0.13∗∗

(0.26) (0.01) (0.07)

NoSkew-L × δ 1.01∗∗∗ (0.01) 0.09
(0.28) 0.01 (0.13)

Period -0.01 -0.01 -0.01
(0.00) (0.01) (0.01)

α 0.01 0.02 0.04
(0.22) (0.20) (0.19)

CRT -0.00 -0.00 -0.01
(0.03) (0.03) (0.04)

Financial literacy -0.14∗∗ -0.14∗∗ -0.14∗∗

(0.06) (0.07) (0.07)

Gender (% women) 0.08 0.07 0.08
(0.18) (0.21) (0.19)

Constant 0.81 0.65 0.67
(0.55) (0.51) (0.50)

N 169 169 169
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 10: Robustness to various probability weighting aggregation methods

Robustness to probability weighting specification. Table 11 presents regression

estimates that are based on a semi-parametric measurement of probability weights (Kpegli

et al., 2023) associated with the high state in our experiment, that is w(0.025) for the

Skewed treatments, and w(0.25) for non-skewed treatments. The interaction term between

Skew L and w(0.025) is negative and significant, indicating that the overweighting of the

small probability 0.025 leads to lower returns for asset Y in the Skew-L treatment, consistent

with our previous results.
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Return
Skew-L -0.67∗∗∗

(0.22)

Skew-H -0.24
(0.22)

NoSkew-L -0.73∗∗∗

(0.22)

w(0.025) -0.81
(0.51)

Skew-L × w(0.025) -0.55∗

(0.29)

Skew-H × w(0.025) -0.24
(0.51)

NoSkew-L × w(0.025) 0.08
(0.41)

w(0.25) -0.90∗

(0.52)

Skew-L × w(0.25) 1.49∗∗∗

(0.57)

Skew-H × w(0.25) 0.42
(0.66)

NoSkew-L × w(0.25) 1.62∗∗

(0.65)

Period -0.01
(0.01)

α -0.15
(0.15)

CRT 0.03
(0.02)

Financial literacy -0.19∗∗∗

(0.04)

Gender (women) -0.07
(0.10)

Constant 1.41∗∗∗

(0.37)
N 169
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 11: Robustness to probability weighting specification

48


