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Abstract

The risk-incentives tradeoff (RIT) is a fundamental result of principal-agent theory.
Yet, empirical evidence has been elusive. This could be due to a lack of robustness of the
theory outside of the standard expected utility framework (EUT) or to confounding factors
in the empirical tests. First, we theoretically study the existence of RIT under alternative
theories: Rank-Dependent Utility (RDU) and Mean-Variance-Skewness (MVS). We show
that RIT is remarkably robust under RDU, but not under MVS. Second, we use a novel
experimental design that eliminates confounding factors and find evidence for RIT even in
the case of risk-seeking agents, which is a distinct prediction of RDU. Our results provide
support for the risk-incentives tradeoff and suggest that it applies to a broad range of
situations including cases in which agents are risk-seeking (e.g., executive compensation).
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1 Introduction

Principal-agent theory has played a key role in understanding human behavior across disciplines
ranging from finance, accounting, strategy and political science to neuroeconomics (Jensen and
Meckling, 1976; Lambert, 2001; Miller, 2005; Brocas and Carrillo, 2008; Dranove et al., 2017).
In economics, the principal-agent framework is a cornerstone of numerous fields including the
theory of incentives. A central result in this literature is the existence of a tradeoff between
providing incentives to foster the effort of risk-averse agents and protecting them against risk
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(Borch, 1962; Mirrlees, 1974; Holmström, 1979; Shavell, 1979; Milgrom and Roberts, 1992;
Bolton and Dewatripont, 2005; Laffont and Martimort, 2009; Gibbons and Roberts, 2013).
The risk-incentives tradeoff (RIT, henceforth) emerges because providing steeper incentives
implies strengthening the link between output and rewards which, in turn, exposes agents to
a greater risk whenever output is a noisy measure of effort. As a result, the optimal contract
typically incorporates a variable pay that incentivizes the agent to exert effort and a fixed pay
that partially hedges the agent against output shocks. These types of contracts are widespread,
and unsurprisingly RIT has been applied to a wide variety of economic settings ranging from
sharecropping to medical insurance (e.g., Zeckhauser, 1970; Stiglitz, 1974) and compensation
setting in firms (Gibbons and Roberts, 2013).

Although the rationale for RIT is appealing, empirical evidence remains scarce (Garen, 1994;
Prendergast, 2002; Lazear and Oyer, 2013). A glimpse of hope has recently come from labora-
tory studies reporting some evidence for RIT (Corgnet and Hernan-Gonzalez, 2019; Chowdhury
and Karakostas, 2020). These lab studies control for possible confounding factors such as or-
ganizational hierarchies, implicit incentives or tacit knowledge that are notoriously difficult to
control for in the field. Yet, the size of the effect reported in Corgnet and Hernan-Gonzalez
(2019) and Chowdhury and Karakostas (2020) remains small.1 Furthermore, recent evidence
from laboratory experiments by Dohmen et al. (2021) is not consistent with RIT since the
presence of output risk does not lead agents to demand weaker incentive schemes, that is lower
piece rates.

In this paper, we use theory and experiments to investigate whether the limited evidence
for RIT is due to a lack of robustness of the underlying theory or to the confounding factors in
empirical tests. Principal-agent models are notorious for their lack of tractability (Grossman
and Hart, 1983; Rogerson, 1985) which has led researchers to focus on particular specifications
such as the LEN (Linear Exponential Normal) model (see Milgrom and Roberts, 1992; Varian,
1992; Laffont and Martimort, 2002; Bolton and Dewatripont, 2005; Gibbons and Roberts, 2013;
Besanko et al., 2017). In this model, the risk-neutral principal proposes the agent a linear
contract composed of a fixed pay and a share of output. The risk-averse agent who maximizes
expected utility (assumed to be exponential) then decides whether to accept the contact or not.
In case of acceptance, the agent chooses a level of effort under the agreed-upon contract. Even
though the principal cannot observe the level of effort, she can observe the final output, which
is impacted by an additive (normally distributed) shock.

The classical version of RIT is derived assuming Expected Utility Theory (EUT, henceforth)
and the LEN specification. Although the LEN model has often been discussed and defended
by contract theorists on the basis of tractability and realism (Holmstrom and Milgrom, 1987;
Diamond, 1998; Laffont and Martimort, 2002; Bolton and Dewatripont, 2005; Carroll, 2015;
Holmström, 2017), little is known about the robustness of RIT in non-EUT settings. This led us
to study the robustness of RIT to alternative theories that allow for distortions of probabilities
(Rank-Dependent Utility theory, RDU, henceforth, Quiggin, 1982) and an explicit preference
for skewness (Mean-Variance-Skewness, MVS, henceforth, Spiliopoulos and Hertwig, 2019).
Risk attitudes have been traditionally characterized by the curvature of the utility function.
However, non-EUT models characterize risk attitudes along different dimensions. For example,
overall risk attitudes under RDU stem both from utility risk attitudes (i.e., the curvature of
the utility function) and probability risk attitudes (i.e., probability weighting). Under MVS,
overall risk attitudes depend on agents’ preferences for variance and skewness.

We theoretically show that RIT is pervasive under RDU because it occurs not only when
agents are overall risk-averse, but also when they are risk-neutral or risk-seeking. For example,

1Corgnet and Hernan-Gonzalez (2019) report a 8.1% (Cohen’s d = 0.34) decrease in the piece rate value
in their noise treatment as compared to a noise-free baseline. A similar decrease (12.7%) if also found by
Chowdhury and Karakostas (2020), notwithstanding their EUT-based prediction of a one-third decrease.
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RIT happens when overall risk-neutral or risk-seeking agents are moderately risk-seeking in the
probability domain (i.e., they moderately overweight probabilities) and risk-averse in the utility
domain (i.e., their utility function is concave). This result suggests that RIT might be more
widespread than predicted by EUT. Yet, this observation contrasts with the limited empirical
evidence for RIT.

In line with existing empirical evidence, MVS provides a setup in which RIT is less pervasive
than under EUT. This happens because RIT does not occur for all risk-averse agents (as in
EUT) and disappears for those that exhibit a preference for positive skewness. Furthermore,
the optimal variable pay (fixed pay) can increase (decrease) with risk, which is what we refer
to as reversed RIT. This occurs when the distribution of the shock is positively skewed and
the aversion to variance is less pronounced than the value of skewness for a risk-averse agent
exhibiting MVS preferences.

These theoretical results show that non-EUT models provide reasons for both hope and
despair regarding the robustness of RIT. To test the predictions of the alternative theories, we
develop a novel experimental testbed for RIT that eliminates confounding factors. We focus
on agents’ decisions by eliciting the minimum fixed pay they are willing to accept for different
values of the variable pay. As principals do not make contractual decisions (see, e.g., Dohmen
et al., 2021) we can discard confounding factors related to their risk attitudes. This design also
eliminates any asymmetry of information between the principal and the agent whose preferences
are unknown. We also use monetary effort instead of a real-effort task (see e.g., Anderhub et al.,
2002; Keser and Willinger, 2007; Gächter and Königstein, 2009) to discard other confounding
factors often present in experimental data such as social motives and reference points (see
Corgnet and Hernan-Gonzalez, 2019), as well as more general ones such as organizational
hierarchies, delegation, implicit incentives, tacit knowledge, uncertainty and market dynamics
(Jensen and Meckling, 1995; Raith, 2008; Adams, 2005; DeVaro and Kurtulus, 2010; Edmans
et al., 2012; He et al., 2014). We do not mean to underplay the importance of these factors
but rather aim at implementing a testbed for the basic mechanism underlying RIT. It follows
that a lack of evidence supporting RIT in our setup would be a definitive blow for the theory.
To ensure that our design can be effectively used to study RIT, we analyze a BareBone (BB,
henceforth) principal-agent model.

Our experiment shows that RIT is remarkably robust and more pervasive than predicted by
EUT. In line with RDU but in contrast with EUT and MVS, RIT arises even when agents are
risk-seeking. This finding has direct implications for various applications of the theory in which
agents are risk-seeking, as is the case of executive compensation (Garen, 1994; Edmans and
Gabaix, 2011; Edmans et al., 2012, 2017) and high-pay workers (Ma et al., 2019). Risk-seeking
is likely to be pervasive in these cases because of selection effects (MacCrimmon and Wehrung,
1990; Brenner, 2015). Furthermore, executive packages are often positively skewed due to, for
example, the use of stock options (Edmans et al., 2017). As a result, an agent who appears to
be risk-averse when rewarded according to a linear contract might be risk-seeking when facing
a skewed compensation package.

The remainder of the paper is organized as follows. Section 2 presents the theoretical models
for RIT under EUT, RDU and MVS. In Section 3, we describe the experimental design. Section
4 presents the results of the experiment and Section 5 concludes.
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2 Model

2.1 Standard setup and predictions

2.1.1 Assumptions

A risk-neutral principal offers a contract to an agent to perform a task. If the agent does not
accept the contract, he receives an outside option y0. If he accepts the contract, then he has
to exert effort e to produce output z = z(e), where z = e+ ϵ̃ and ϵ̃ is a random variable. Thus,
there is a noisy relationship between effort and output. The cost of effort function C(e) is
increasing and convex. The principal observes the level of output, but not the underlying level
of effort. The principal maximizes her revenue θz, where θ > 0 denotes the marginal product
of effort. To ease exposition, we consider a binary shock model (see e.g., Milgrom and Roberts,
1992), which is often used in empirical tests of the theory (see Corgnet and Hernan-Gonzalez,
2019; Dohmen et al., 2021).2 In Appendix C we further show that our predictions qualitatively
hold if we consider a continuous shock. In particular, this includes the special case of the nor-
mally distributed shock used in the LEN model (see e.g., Milgrom and Roberts, 1992; Bolton
and Dewatripont, 2005). Below, we outline our assumptions.

Assumption 0 (A0: Binary shock). The shock ϵ̃ is a binary random variable defined as
ϵ̃ =

(

− ϵ, 1−p
p
ϵ; 1− p, p

)

, ϵ ≥ 0 and p ∈ (0, 1] so that E(ϵ̃) = 0 and V (ϵ̃) = 1−p
p
ϵ2.3

Assumption 1 (A1: Risk-neutral principal). The principal is risk-neutral and maximizes
the expected payoff.

Assumption 2 (A2: Linear contracts). The principal proposes to the agent a contract
(α, β) that is linear in output and pays y = α + βθz, where α ∈ ❘ is the fixed pay and β > 0
the variable pay.4

Assumption 3 (A3: CARA utility). The agent’s utility function is u(x) = 1−exp(−rx)
r

for
r ̸= 0 and u(x) = x for r = 0.

With Assumption 3, we define utility risk attitudes in terms of the shape of the utility
function. By contrast, the overall risk attitudes of the agent depend on his overall valuation
of the contract which is only partly captured by the utility function. We define utility risk
attitudes and overall risk attitudes as follows.

Definition 1 (Utility risk attitudes). Utility risk-aversion [risk-neutrality] (risk-seeking)
corresponds to a concave, r > 0 [linear, r = 0] (convex, r < 0) utility function.

Definition 2 (Overall risk attitudes). An agent exhibits overall risk-aversion [risk-neutrality]
(risk-seeking) whenever his risk premium for accepting the contract is positive [null] (negative).

Definition 2 is a general (model-free) definition of risk attitudes due to Pratt (1971) and
Arrow (1964). Under EUT, overall risk attitudes and utility risk attitudes always coincide.

2Milgrom and Roberts (1992) and Laffont and Martimort (2002) derive fundamental results in the theory of
incentives using a model with binary shocks.

3We consider continuous random shocks in Appendix C.
4We assume linear contracts because they are theoretical tractable and empirically relevant (e.g., Holmström,

2017). Also, we do not require β ∈ [0, 1] (e.g., Milgrom and Roberts, 1992; Laffont and Martimort, 2002).
Principal could then set β > 1 and α < 0, especially for risk-seeking agent.
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However, this is not the case under RDU or MVS where utility risk-aversion (utility risk-
seeking) does not necessarily imply overall risk-aversion (risk-seeking).

In this paper, we consider the standard assumption of a concave utility function (i.e., As-
sumption 3’ which is equivalent to Assumption 3 with r > 0), unless stated otherwise.

Assumption 3’ (A3’: Utility risk-averse agent). The agent is utility risk-averse in the
sense of r > 0.

For the sake of concision, hereafter we use the term risk attitudes (risk-aversion, risk-seeking
or risk-neutrality) to refer to overall risk attitudes.

Assumption 3” (A3”: Relative risk-aversion). The relative risk-aversion index evaluated

at x is less than 1, that is −
u′′(x)

u′(x)
x = rx < 1.

Assumption 4 (A4: Public knowledge of the agent’s risk-attitudes). The principal
knows the agent’s risk attitudes.

Assumption 5 (A5: Quadratic cost). The cost of effort function is: C(e) = ψe2 with ψ > 0.

Given these assumptions, the compensation associated with the contract, which is the ran-
dom wage net of the cost of effort, can be described as a lottery L:

L :=

(

α + βθ

(

e+
1− p

p
ϵ

)

− ψe2, α + βθ

(

e− ϵ

)

− ψe2; p, 1− p

)

(1)

where the first three moments (i.e., mean E, variance V and skewness S) are:

E(L) = α + βθe− ψe2, V (L) =
1− p

p
β2θ2ϵ2 and S(L) =

1− p

p

1− 2p

p
β3θ3ϵ3

Note that varying ϵ does not affect the expected value of the lottery (E(L)) but impacts
variance (V (L)) and skewness (S(L)). By contrast, varying the fixed pay (α) impacts the
expected value of the lottery without affecting the other two moments. Finally, the variable
pay (β) impacts all three moments.

2.1.2 Model specification under EUT, RDU and MVS

We first determine how the agent evaluates lottery L based on three different specifications:
EUT, RDU and MVS.

EUT

Under EUT, the agent values the contract by its expected utility:

EU(L) = pu

(

α + βθ

(

e+
1− p

p
ϵ

)

− ψe2

)

+ (1− p)u

(

α + βθ

(

e− ϵ

)

− ψe2

)

(2)

In this model, ∂EU(L)
∂ϵ

< 0 as long as the utility function u(.) is concave.5

5By contrast, (2) increases with (is unaffected by) the shock magnitude if r < 0 (r = 0).
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RDU

Under RDU, the agent distorts probabilities using a probability weighting function w(p),
which is a strictly increasing function from [0, 1] to [0, 1] with w(0) = 0 and w(1) = 1. Hence,
risk attitudes not only stem from utility curvature (as in EUT), but also from probability
weighting. Below, we define probability risk-aversion, risk-neutrality and risk-seeking.

Definition 3 (Probability risk attitudes). Under RDU, an agent exhibits probability
risk-aversion [risk-neutrality] (risk-seeking) for a specific probability p if w(p) < p [w(p) = p]
(w(p) > p).

The agent’s valuation of the contract then becomes:

RDU(L) = w(p)u

(

α + βθ

(

e+
1− p

p
ϵ

)

− ψe2

)

+ (1− w(p))u

(

α + βθ

(

e− ϵ

)

− ψe2

)

(3)

For a probability risk-seeking agent, the valuation of the contract in (3) has an inverted
J-shape with respect to ϵ (see Figure 1). To grasp the intuition, consider an arbitrarily small
shock (ϵ0) making the agent approximately utility risk-neutral, thus exhibiting a linear utility

function. In that case ∂RDU(L)
∂ϵ

= w(p)βθ 1−p
p

− (1 − w(p))βθ > 0 ⇐⇒ w(p) > p. Hence, for
that level of shock the agent is necessarily risk-seeking because he is both utility risk-neutral
and probability risk-seeking. That is, for small shocks, risk attitudes are driven by probability
weighting rather than by the curvature of the utility function. As shown in Figure 1, the
valuation of the lottery (RDU(L)) at ϵ0 is above the utility of the expected value of the lottery
(u(E[L])), implying a negative risk premium and hence a risk-seeking agent.

However, as the shock increases in magnitude, utility risk-aversion increases up to a point in
which utility risk-aversion exactly offsets probability risk-seeking, making the agent risk-neutral.
This level of shock (denoted ϵ1 in Figure 1) corresponds to a null risk premium associated with
the contract lottery (i.e., RDU(L) = u(E[L])). Between ϵ0 and ϵ1, there is also a level of shock
(denoted ϵ∗ in Figure 1) for which the negative effect of increasing the shock magnitude due to
utility risk-aversion is exactly equal to the positive effect due to probability risk-seeking. For
shocks greater than ϵ1, a probability risk-seeking agent is risk-averse (i.e., RDU(L) < u(E[L])).

RDU(L)

•

•

•

ϵϵ0 ϵ1ϵ∗

u
(

E[L]
)

R
is
k
se
ek
in
g

R
is
k
av
er
si
on

Figure 1: Valuation of the contract by a probability risk-seeking RDU agent (equation (3)) as
a function of the shock magnitude.
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MVS
Under MVS, the agent evaluates a lottery according to its mean, variance and skewness

(Kraus and Litzenberger, 1976; Spiliopoulos and Hertwig, 2019) as follows:

MV S(L) = E(L) + avV (L) + asS(L) (4)

where av is a parameter that captures attitudes towards variance and as captures attitudes
towards skewness. In line with the LEN framework and with empirical evidence (Kraus and
Litzenberger, 1976; Spiliopoulos and Hertwig, 2019), we assume that the agent is averse to
variance (i.e., av < 0) and seeks positive skewness (i.e., as > 0). Furthermore, in contrast
to EUT, we explicitly consider following the literature (e.g., Spiliopoulos and Hertwig, 2019;
Mitton and Vorkink, 2007) that av and as are unrelated.6

An MVS agent exhibits risk-aversion for any negatively-skewed lottery. For positively-
skewed lotteries, he is risk-seeking (risk-averse) [risk-neutral] if −av

as
< τN(β, ϵ) (−

av
as
> τN(β, ϵ))

[−av
as

= τN(β, ϵ)], where τN(β, ϵ) :=
S(L)
V (L)

= 1−2p
p
βθϵ. For any p ≥ 1/2, we have τN(β, ϵ) ≤ 0 so

that the agent is systematically risk-averse since −av
as
> 0.

In the presence of aversion to variance (av < 0) and preference for positive skewness (as > 0),
the valuation function (4) is J-shaped with respect to ϵ when p < 1/2 (see Figure 2). The
intuition behind Figure 2 follows from the fact that for small (large) levels of the shock, the
variance of L is larger (smaller) than its skewness. Hence, for a small level of shock (say ϵ0),
the agent is necessarily risk-averse since the aversion to variance outbalances the preference
for positive skewness. This gives rise to a positive risk premium: the valuation of the lottery
(MVS(L)) lies below its expected value. For a sufficiently high level of shock magnitude (∀ϵ > ϵ1
in Figure 2), the agent necessarily exhibits risk-seeking since the preference for positive skewness
outbalances the aversion to variance. At some level of the shock (denoted ϵ1 in Figure 2), the
two effects cancel out so that the agent is risk-neutral with a null risk premium (MVS(L)=E[L]).
Finally, Figure 2 also features a level of shock ϵ∗ for which the negative effect of increasing the
shock magnitude due to aversion to variance is exactly equal to the positive effect of increasing
the shock magnitude due to the preference for positive skewness.

MV S(L)

•

•

•

ϵϵ0 ϵ1ϵ∗

E[L]

R
is
k
se
ek
in
g

R
is
k
av
er
si
on

Figure 2: Valuation of the contract by an averse-to-variance (av < 0) and preference-for-
positive-skewness (as > 0) MVS agent (equation (4)) as a function of the shock magnitude
when p < 1/2.

6Under EUT, av and as are linked via utility function. The third order Taylor approximation of the certainty
equivalent incorporates attitudes towards variance and skewness due to the second and third derivatives of the
utility function.
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2.1.3 RIT predictions

For each theory, we can characterize the optimal contract: the fixed pay (α∗) and the variable
pay (β∗) proposed by the principal, as well as the optimal level of effort e∗ provided by the
agent. We provide the corresponding proofs in Appendix A. Here, we focus on characterizing
the conditions of existence of RIT for the optimal contract. Definition 4 below characterizes
RIT and reversed RIT. RIT occurs when increasing the variable pay generates a trade-off be-
tween desirable and undesirable consequences, thus forcing the principal to set a compensation
contract with an intermediate intensity of incentives (i.e., 0 < β∗ < 1). On the positive side,
increasing the variable pay incentivizes the agent to exert more effort. On the negative side, it
increases the level of risk faced by the agent because it makes his pay more sensitive to output
shocks. It follows that under RIT an increase in the magnitude of the output shock requires
the principal to set a contract that limits the agent’s exposure to the shock. This is achieved
by decreasing the variable pay while increasing the fixed pay to ensure the agent is willing to
accept the contract (see Definition 4i).

Definition 4 (RIT and Reversed RIT)
i) RIT corresponds to the case in which the optimal variable pay (fixed pay) decreases (in-
creases) in the output shock ϵ for a given p.
ii) Reversed RIT corresponds to the case in which the optimal variable pay (fixed pay) increases
(decreases) in the output shock ϵ for a given p.
iii) No RIT corresponds to the case in which there is no relationship between the optimal pay
and the output shock ϵ for a given p

Under EUT, RIT always occurs for risk-averse agents (Assumption 3’). For risk-neutral
agents, there is no RIT because fixed pay and variable pay do not vary with the shock (see
Definition 4iii). For risk-seeking agents, RIT is reversed because the optimal variable (fixed)
pay increases (decreases) with the shock size. These results are standard in the LEN model
(see e.g., Milgrom and Roberts, 1992). Yet, we provide the details of the proofs in Appendix
A (Proposition A1) for the case of a binary shock and for the case of a general utility function
and a continuous shock (see Propositions B1 to B3 and Proposition C1 in Appendices B and
C).

Under RDU, RIT is even more pervasive than under EUT. As in EUT, it occurs whenever
agents are risk-averse (see Proposition A2 in Appendix A) given that the valuation function (3)
is decreasing in the shock magnitude. In contrast to EUT, it can also occur when agents are
risk-neutral or risk-seeking (see Proposition A3 in Appendix A). In the case of a risk-seeking
agent who overweighs probabilities, the value of the contract in (3) increases with fixed pay
α (irrespective of risk attitudes) and is inverse J-shaped with respect to the shock size (see
Figure 1). For a small shock (ϵ0 in Figure 1), (3) is increasing in the shock magnitude. In
that case, the principal can offer the agent a lower fixed pay while keeping his utility equal
to the outside option (y0). As in EUT, this situation corresponds to reversed RIT. However,
for an intermediate shock (ϵ∗ < ϵ < ϵ1 in Figure 1), the risk-seeking RDU agent’s contract
valuation is decreasing in the shock. This implies that the principal needs to offer the agent a
higher fixed pay to keep his level of utility constant in response to a larger shock. Hence, for
a risk-seeking RDU agent RIT emerges at an intermediate shock level. Example 1 provides a
numerical illustration of RIT for a (moderately) risk-seeking RDU agent.

Example 1 (RIT for a risk-seeking agent under RDU). We consider r = 0.1, (ψ, θ, y0) =
(0.5, 1, 4). In the absence of shock (i.e., ϵ = 0), the optimal variable pay is β∗ = 1 and the
optimal fixed pay is α∗ = 3.5. In the presence of a shock (ϵ = 1) and given a RDU agent
who overweights probability 0.1 such that w(p) = 0.15, we obtain β∗ = 0.76 and α∗ = 3.64.
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Thus, the optimal variable (fixed) pay in the presence of a shock is smaller (larger) than in its
absence, which means RIT holds. Because the expected value of the contract (E(L∗) = 3.93) is
lower than its certainty equivalent (which is equal to the outside option y0 = 4 due to the par-
ticipation constraint), the agent is risk-seeking for the optimal contract (α∗, β∗ )=(3.64,0.76).
As a result, RIT is observed for a risk-seeking agent.

Under MVS, we show that RIT may not hold when agents are risk-averse which stands
in stark contrast with EUT predictions. In particular, when the shock is positively skewed
(p < 1/2), RIT may not hold (and may even reverse) for risk-averse agents who value positive
skewness (see Appendix A, Propositions A4 and A5). This happens because the MVS-based
valuation of the contract in (4) increases with fixed pay α (irrespective of risk attitudes) and
is J-shaped in the shock magnitude (see Figure 2). For a small shock (ϵ0 in Figure 2) and a
risk-averse agent, the valuation (4) is decreasing in the shock size. In that case, the principal
must offer the agent a higher fixed pay to maintain utility equal to the outside option (y0). As
in EUT, this situation corresponds to RIT.

However, for an intermediate shock (see ϵ∗ < ϵ < ϵ1 in Figure 2) the value function of the
risk-averse MVS agent is increasing in the shock size. This implies that the principal can offer
the agent a lower fixed pay while maintaining his level of utility equal to the outside option.
Unlike EUT, this situation corresponds to reversed RIT for a risk-averse agent. Finally, in line
with EUT, a risk-seeking MVS agent systematically exhibits reversed RIT given that his valu-
ation in (4) is increasing in the shock magnitude. Example 2 provides a numerical illustration
of a situation in which reversed RIT occurs for a risk-averse agent under MVS.

Example 2 (Reversed RIT for a risk-averse agent under MVS). We consider (ψ, θ, y0) =
(0.5, 1, 20) and av = −0.0229 and as = 0.0037 following the estimates provided in Spiliopoulos
and Hertwig (2019). In the absence of shock (i.e., ϵ = 0), the optimal variable pay is β∗ = 1
and the optimal fixed pay is α∗ = 19.5. In the presence of a shock (ϵ, p) = (1, 0.32), we obtain
β∗ = 1.02 and α∗ = 9.70. Thus, the optimal variable (fixed) pay in the presence of a shock is
larger (smaller) than in the absence of shock implying reversed RIT. Because the expected value
of contract (E[L∗]=20.09) is higher than its certainty equivalent (20), the agent is risk-averse
for the optimal contract (α∗, β∗) = (9.70, 1.02). As a result, we observe reversed RIT for a
risk-averse agent.

We summarize our theoretical RIT predictions for EUT, RDU and MVS in Table 1. For
each type of agent risk attitudes, we report the three theories (EUT, MVS and RDU) for which
RIT is present (left column), absent (middle column), or reversed (right column).

Table 1: RIT and risk-attitudes

Agent’s risk attitudes RIT No RIT Reversed RIT

Risk-averse RDU-EUT-MVS MVS MVS
Risk-neutral RDU RDU-EUT-MVS MVS
Risk-seeking RDU RDU RDU-EUT†-MVS

† With Assumption 3’, an agent cannot be risk-seeking under EUT. To consider risk-seeking agents, we
need to consider convex utility giving rise to reversed RIT.

2.2 The BareBone model

Our aim is to test RIT in a BareBone (BB) experimental design that is robust to commonly
observed deviations from standard Assumptions 1-5. In practice, the risk-neutrality of the
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principal cannot be ensured so that Assumption 1 does not necessarily hold in the lab. In
addition, principals do not know the risk preferences of agents notwithstanding Assumption
4. To alleviate these issues, we adopt an empirical approach that directly elicits the minimum
fixed pay (αm) agents are ready to accept given a preset value of the variable pay (β). This
approach allows us to focus on agents’ decisions abstracting away from principals’ contractual
decisions. In our BB approach, RIT can be defined as follows.

Definition 5 (RIT and Reversed RIT in the BB model). RIT (Reversed RIT) [No RIT]
corresponds to the case in which the minimum fixed pay accepted by an agent (αm) increases
(decreases) [does not change] in the output shock ϵ for given values of β and p.

Under EUT, we can derive Proposition 1 stating that a risk-averse agent demands a higher
fixed pay when the shock magnitude increases, giving rise to RIT. This behavior boils down
to an enhanced demand for insurance when facing greater risk. Proposition 1ii states that
RIT holds under EUT for risk-averse agents in line with Table 1. In Appendix D, we provide
the proof of Proposition 1 and show its connection with Propositions A1 (Appendix A), B1
(Appendix B) and C1 (Appendix C). In line with the diagonal entries in Table 1, we can also
show that RIT is absent (reversed) under EUT when the agent is risk-neutral (risk-seeking)
(see Appendix D).

Proposition 1 (RIT with EUT).
i) The minimum fixed pay increases in utility risk-aversion.
ii) For risk-averse agents, the minimum fixed pay increases in ϵ and β.

Under RDU, we show that RIT holds whenever the agent is probability risk-averse (see
Proposition 2ii). By Assumption 3’, this implies that the agent is also overall risk-averse.
Furthermore, Proposition 2iii states that RIT also holds for a probability risk-seeking agent as
long as the index of absolute risk aversion (r) is above a certain threshold (rto(β, ϵ)) such that
his level of utility risk-aversion is sufficiently high. Interestingly, this threshold is lower than
the value of the index of absolute risk aversion (rN(β, ϵ)) for which a probability risk-seeking
agent exhibits risk-neutrality given the contract (αm, β) (see Proposition 2iv). As a result, for
any value of the index of absolute risk aversion r ∈ (rto(β, ϵ), rN(β, ϵ)), the agent is risk-seeking
and exhibits RIT. Finally, Proposition 2v implies that the agent is more likely to exhibit RIT
when the shock magnitude and the variable pay are large. It also implies that the agent is more
likely to exhibit risk-seeking attitudes for a small shock and a low variable pay. In Appendix
D, we provide the proof of Proposition 2 and show its connection with Propositions A2-A3
(Appendix A), B2-B3 (Appendix B) and C1 (Appendix C).

Proposition 2 (RIT with RDU).
i) The minimum fixed pay increases in utility risk-aversion and probability risk-aversion.
ii) Under probability risk-aversion (w(p) < p), the minimum fixed pay increases in ϵ.
iii) Under probability risk-seeking (w(p) > p), there exists a threshold rto(β, ϵ) > 0 such that
the minimum fixed pay increases (decreases) in ϵ if and only if r > rto(β, ϵ).
iv) We have rto(β, ϵ) < rN(β, ϵ), where rN(β, ϵ) is the level of absolute risk aversion such that
a probability risk-seeking agent exhibits risk-neutrality for the contract (αm, β).
v) The two thresholds rto(β, ϵ) and rN(β, ϵ) decrease in ϵ and β.

Under MVS, we show that RIT holds whenever the shock is negatively skewed (p ≥ 1/2) in
which case the agent is risk-averse (see Proposition 3ii). Furthermore, Proposition 3iii shows
that for a positively skewed shock (p < 1/2), RIT [reversed RIT] holds as long as the value
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of the ratio , τ := −av
as
, between aversion to variance and preference for positive skewness is

above [below] a certain threshold (τto(β, ϵ)), that is as long as the agent has a sufficiently high
[low] aversion to variance relative to his preference for positive skewness. Given that τto(β, ϵ)
is higher than the ratio (τN(β, ϵ)) for which an MVS agent exhibits risk-neutrality given the
contract (αm, β) (see Proposition 3iv), a risk-averse MVS agent exhibits reversed RIT for any
−av
as

∈ (τN(β, ϵ), τto(β, ϵ)).
7 Finally, Proposition 3v implies that a MVS agent is more likely to

exhibit reversed RIT when the shock magnitude and the variable pay are large. It also implies
that the agent is more likely to exhibit risk-seeking attitudes for a high shock magnitude and
a high level of variable pay. In Appendix D, we provide the proof for Proposition 3 and show
its connection with Propositions A4-A5 (Appendix A).

Proposition 3 (RIT under MVS).
i) The minimum fixed pay increases in the aversion to variance av. In addition, if p < 1/2
(p > 1/2), the minimum fixed pay decreases (increases) in the preference for positive skewness
as.
ii) If the shock is negatively skewed (p ≥ 1

2
) then the minimum fixed pay increases in ϵ.

iii) If the shock is positively skewed (p < 1
2
), there exists a threshold τto(β, ϵ) :=

3
2
1−2p
p
βθϵ such

that the minimum fixed pay increases (decreases) in ϵ if and only if −av
as
> τto(β, ϵ).

iv) We have τto(β, ϵ) > τN(β, ϵ) := 1−2p
p
βθϵ, where τN(β, ϵ) is the level of −av

as
such that the

agent exhibits risk-neutrality for the contract (αm, β).
v) The two thresholds τto(β, ϵ) and τN(β, ϵ) increase in ϵ and β.

Propositions 1, 2 and 3 show that our BB model can be used to study RIT. Predictions in
Table 1 thus carry on to the BB model. The next section provides details of the experimental
test of the BB model predictions.

3 Experimental design

In line with the BB model, we study RIT using the minimum fixed pay (αm) accepted by the
agent.

3.1 Elicitation of minimum fixed pay

We elicit the minimum fixed pay (αm) an agent is willing to accept given the incentive contract
(β), as well as the magnitude and the probability of occurrence of the shock (ϵ, p). We thus
elicit αm for various combinations of (β, ϵ, p) based on the following indifference condition:

L(αm
∣

∣β, ϵ, p) ∼ y0

where y0 is the riskless outside option and L(.) is the lottery associated with a given incentive
contract (β) and a given shock (ϵ, p) as defined in (1). We vary the triplet (β, ϵ, p) while
fixing the parameters of the cost of effort function (ψ = 2.5), the marginal product of effort
(θ = 100), and the outside option (y0 = 1, 000). We consider 30 combinations of (β, ϵ, p) ∈
{0.3, 0.5, 0.7} × {3, 4} × {0.1, 0.25, 0.33, 0.5, 0.75}.8 For each combination, we also assume that

7From Definition 2 (overall risk attitudes) and equation (4) of MVS, the risk premium in MVS is equal to

avV (L)+asS(L). Risk neutrality corresponds to avV (L)+asS(L) = 0 or equivalently to −av
as

= S(L)
V (L) := τN (β, ϵ)

and risk-aversion (risk-seeking) corresponds to avV (L) + asS(L) > 0 (< 0) or equivalently to −av
as
< (>) τN .

8We do not consider the trivial case of ϵ = 0 for which the task boils down to picking the highest value in a
table of numbers.
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the agent implements the optimal level of effort e∗ that maximizes the value of the lottery so
that we elicit αm as follows:

L(αm
∣

∣β, ϵ, p; e∗) ∼ y0

Where e∗ = βθ

2ψ
. In the experiment, we automatically implement the optimal level of effort

because it is a trivial decision for the agent. This allows us to focus on the choice of αm. For
each combination (β, ϵ, p), we elicit αm using a multiple price list á la Holt and Laury (2002) in
which we vary the fixed pay of a contract in increments of 50 between 0 and 1,000 for a total
of 21 possible values. We set an upper bound equal to the value of the outside option (1,000).9

Figure 3 provides an example of a decision screen for the combination (β, ϵ, p)=(0.7,3,0.5),
where Option A corresponds to the sure payoff associated with the outside option and Option
B represents all the possible payments associated with lottery L(αi

∣

∣0.7, 3, 0.5; e∗). The value
of fixed pay is such that αi = (i − 1) × 50, where i is the row number between 1 and 21. For
(β, ϵ, p)=(0.7,3,0.5), we have that e∗ = βθ

2ψ
= 14. Thus, for row i = 1, Option B displays the

two possible payments associated with L(0
∣

∣0.7, 3, 0.5; 14): 280 if the shock is negative and 700
otherwise. The likelihood of a given payment is visually represented by the frequency of cells
in which it appears. Different amounts appear in different colors to facilitate the reading of
the table. In total, participants face 30 tables, each corresponding to a different combination
of (β, ϵ, p). All amounts in tables are in euro cents. To avoid hedging issues (Charness et al.,
2016), one of the 30 tables is selected at random for payment upon a successful completion of
the experiment.

For each table, participants pick a single row corresponding to their switching point, i.e., the
point beyond which they prefer Option B over Option A. Participants cannot select multiple
switching points. In the example presented in Figure 3, the participant picked Option A for
the first 10 rows and switched to Option B afterwards (see orange cells on the left of the table).
This implies that the minimum fixed pay (αm) the participant is willing to accept for this
contract is in the interval (450,500). In that example, we estimate αm to be the midpoint of
the interval, that is 475 (e.g., Abdellaoui et al., 2008; Gonzalez and Wu, 1999).

9The lower bound of 0 does not appear to be restrictive in our experiment as only 1.1% of the decisions
revealed a minimum fixed pay that is less or equal to 0.
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Figure 3: Example of the decision screen for (β, ϵ, p) = (0.7, 3, 0.5). In this example, the
participant selected Option A for the first 10 rows (cells A1 to A10 in orange) and selected
Option B from the last 11 rows (cells B11 to B21 in orange). Therefore, this participant
switched from Option A in row 10 to Option B in row 11. This switching point corresponds to
a fixed pay between 450 = (10− 1)× 50 and 500 = (11− 1)× 50.

Prior to the 30 decisions, participants completed an incentivized training phase to get
accustomed to the graphical representation of lottery payments. The probability training phase
starts with a graphical simulation of the outcomes of a lottery in which the value 100 appears
twice in the table while the value 400 appears 7 times. Participants learn that after a sufficient
number of draws the frequency of occurrence of 100 (400) equals the underlying probability
of 0.22 (0.78). A sequence of random draws is visually presented to the participants for at
least 5 seconds. In the next 7 tables, participants estimate the frequency of occurrence of
a given value after 100,000 random draws. These frequencies are calibrated to cover all the
relevant frequencies used in the main experimental task: 0.1, 0.25, 0.33, 0.50, and 0.75. An
answer within a 5% range of the actual frequency is worth 10 cents. Our design simplifies
previous RIT experiments in two ways. First, we focus on the agent’s decision to accept or
reject a contract that is exogenously set by the experimenter (see e.g., Dohmen et al., 2021). As
previously mentioned, this allows us to leave aside issues related to unknown risk preferences
and asymmetric information between the agent and the principal. Furthermore, it allows us to
discard fairness motives that can affect the principal’s offer and the agent’s acceptance decision.
As observed in other principal-agent experiments, an equal split of revenues is often a modal
response (see e.g., Anderhub et al., 2002; Keser and Willinger, 2007; Gächter and Königstein,
2009; Corgnet and Hernan-Gonzalez, 2019).

In contrast to Corgnet and Hernan-Gonzalez (2019) and Dohmen et al. (2021) who imple-
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ment a real-effort task, our design relies on a monetary measure of effort (as in Chowdhury
and Karakostas, 2020). Not using a real-effort task to elicit effort allows us to specify the
cost of effort function and focus on the agent’s acceptance decision. In our design, providing
effort consists in making a money transfer at a monetary cost to the agent. The optimal effort
decision turns out to be trivial to calculate and is automatically computed by our experimental
software. The use of monetary effort allows us to present agent’s choices in a payoff table (see
Figure 3). We expect this layout contributes to downplaying the role of reference points so that
we can center our analysis of RIT under non-EUT models on probability distortions (RDU)
and attitudes towards variance and skewness (MVS).10 In RIT setups using a real-effort task,
reference dependence appears to play a role in explaining the impact of output shocks on effort
(Corgnet and Hernan-Gonzalez, 2019; Dohmen et al., 2021).11 The rationale is that people may
exert higher effort in the presence of a shock than in its absence in order to offset any potential
monetary loss. In our monetary effort design, this simple mechanism does not apply because
the agent cannot hedge against monetary losses by increasing monetary effort. Indeed, mone-
tary effort implies a monetary cost and thus perceived as a loss by the agent. This argument
also reflects the fact that the increase in effort due to output shock observed in real-effort tasks
(Sloof and Van Praag, 2010; Corgnet and Hernan-Gonzalez, 2019; Dohmen et al., 2021) is not
observed when monetary effort is used (Chowdhury and Karakostas, 2020).12

3.2 Preliminary survey session

Two days before completing the main experimental task (as discussed in Section 3.1), partici-
pants completed a series of individual tests and questionnaires. This preliminary set of tasks
includes a numeracy test (Schwartz et al., 1997; Cokely et al., 2012), a probability weighting
elicitation task (Kpegli et al., 2022) for the relevant set of probabilities (i.e., 0.1, 0.25, 0.33, 0.5
and 0.75), probability training mimicking the setup used in the main experimental session, loss
aversion measurement (Brink and Rankin, 2013), risk attitude measurement (Holt and Laury,
2002) and a 7-item modified version of the cognitive reflection test (Frederick, 2005; Toplak
et al., 2014).

3.3 Procedure

The design has been approved by the local ethical committee at the GATE research institute and
pre-registered on the AsPredicted website (#82616). We recruited a total of 237 participants
from a pool of more than 2,000 students at a major experimental economic laboratory in
France.13 All sessions were conducted online using Qualtrics. The average duration was 23
(29) minutes for the main (survey) sessions. The average earnings for the two sessions were
18.54 euros including a 4 euro flat fee paid for completing both sessions. The complete set of
instructions is available in Appendix H.

10Despite experiencing a potential negative shock, agents were typically not shown any losses. In very few
instances, a small loss of 30 appeared in the first row when the shock was 4, the fixed pay was 0, and the variable
pay was 0.3. This occurred in less than 0.5% of the cells presented to participants. Furthermore, these rows
involved trivial decisions and were not critical switching points between Options A and B.

11See Appendix E for an analysis of RIT under reference-dependence.
12Extensive data confirming this claim is also available from the authors upon request.
13This is 20% less than the pre-registered target number (300) due to lower response rate than expected. This

can be explained by the sudden increase in COVID cases at that specific time and location. Only 4 participants
dropped out between the main experimental task and the survey sessions.
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4 Results

4.1 Risk attitude parameters and classification of agents

The aim of this section is twofold. First, we test the assumptions about risk attitude compo-
nents (utility function, probability weighting function, attitudes towards variance and skewness)
underlying our theoretical predictions. That is, we aim to empirically check if agents exhibit
a concave utility function (r > 0) under EUT, and overweight small probabilities (w(p) > p)
and underweight intermediate and high probabilities (w(p) < p) under RDU. For MVS, we
also check whether people exhibit an aversion to variance (av < 0) and a preference for skew-
ness (aS > 0) (MVS). Second, using these three models we classify participants into types by
identifying the specification that best fits their decisions.

4.1.1 Risk attitude parameters

We use agents’ switching points in the minimum fixed pay elicitation task to determine their
certainty equivalents for binary lotteries with various probabilities. In addition to the 30 cer-
tainty equivalents from agents’ switching points elicited in the main sessions, we also use 15
additional certainty equivalents obtained in the probability weighting elicitation task in the
preliminary survey session. With 45 certainty equivalents per subject, we can estimate the
probability weighting function and utility curvature at the individual level under RDU follow-
ing Kpegli et al. (2022), as well as utility curvature for EUT and attitudes towards variance
and skewness under MVS. Appendix F provides details of the estimation procedure.

Tables 2 to 4 summarize the results obtained at the individual level. Under EUT, Table
2 indicates that 192 participants (81.01%) have concave utility under EUT (r > 0). Under
RDU, Table 3 indicates that 209 participants (88.19%) exhibit a concave utility function. In
addition, the number of participants who overweight probabilities 0.1, 0.25, 0.33, 0.5 and 0.75
are 215 (90.72%), 178 (75.11%), 142 (59.92%), 92 (38.82%) and 46 (19.41%), respectively. In
total, the number of participants who exhibit both concave utility and overweighting of small
probabilities 0.1, 0.25 and 0.33 are 201 (84.81%), 163 (68.78%) and 133 (56.12%). Finally, the
number of participants who exhibit both concave utility and underweighting of probabilities 0.5
and 0.75 equal 126 (53.16%) and 164 (69.20%). These average results are in line with the typical
concave utility function and inverse S-shaped probability weighting found in the literature.
Under MVS, Table 4 indicates that 193 (80.59%) and 191 participants (81.43%) exhibit an
aversion to variance and a preference for skewness, respectively. In total, 187 participants
(78.90%) exhibit both characteristics.

Table 9 in Appendix F summarizes aggregate estimates for the whole sample. Under EUT,
the estimate of the CARA coefficient of absolute risk aversion r is 0.0038 (p-value < 0.001,
t-test). This value indicates concavity of the utility function, which implies risk aversion under
EUT. Under RDU, the estimate of r is 0.0023 (p-value < 0.001). This value indicates concave
utility pointing to utility risk-aversion. The estimated probability weighting function (see
Figure ??) is inverse S-shaped with overweighting for p ≤ 0.33 (probability risk-seeking) and
underweighting for p ≥ 0.5 (probability risk-aversion). Our estimation results are consistent
with the empirical literature on RDU (e.g., Tversky and Kahneman, 1992; Gonzalez and Wu,
1999; Bleichrodt and Pinto, 2000; Bruhin et al., 2010). Under MVS, the coefficients of attitudes
towards variance and skewness are av = −0.00097 (p-value < 0.001) and as = 4.8 × 10−7 (p-
value < 0.001). These estimates indicate an aversion to variance and a preference for positive
skewness and once again stand in line with previous studies (e.g., Spiliopoulos and Hertwig,
2019).

Overall, the basic assumptions underlying our three models are validated by our experimen-
tal data on certainty equivalents. On average, participants exhibit a positive CARA coefficient
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that is below 1 (for both EUT and RDU), an inverse S-shaped probability weighting function
(for RDU), and an aversion to variance and a preference for skewness (for MVS).

Table 2: Utility curvature under EUT

Number Percentage
Concave 192 81.01 %
Convex 45 18.99 %
Total 237 100 %

Table 3: Utility curvature and probability weighting under RDU

Number (%) Underweighting Overweighting Total
Probability p = 0.1
Concave 8 201 209

(3.38%) (84.81%) (88.19%)
Convex 14 14 28

(5.91%) (5.91%) (11.81%)
Total 22 215 237

(9.28%) (90.72%) (100%)
Probability p = 0.25
Concave 46 163 209

(19.41%) (68.78%) (88.19%)
Convex 13 15 28

(5.49%) (6.33%) (11.81%)
Total 59 178 237

(24.89%) (75.11%) (100%)
Probability p = 0.33
Concave 76 133 209

(32.07%) (56.12%) (88.19%)
Convex 19 9 28

(8.02%) (3.80%) (11.81%)
Total 95 142 237

(40.08%) (59.92%) (100%)
Probability p = 0.50
Concave 126 83 209

(53.16%) (35.02%) (88.19%)
Convex 19 9 28

(8.02%) (3.80%) (11.81%)
Total 145 92 237

(61.18%) (38.82%) (100%)
Probability p = 0.75
Concave 164 45 209

(69.20%) (18.99%) (88.19%)
Convex 27 1 28

(11.39%) (0.42%) (11.81%)
Total 191 46 237

(80.59%) (19.41%) (100%)
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Table 4: Attitudes towards variance and skewness under MVS

Number (%) Aversion to skewness Preference for skewness Total
Preference for variance 40 4 44

(16.88%) (1.69%) (18.57%)
Aversion to variance 6 187 193

(2.53%) (78.90%) (81.43%)
Total 46 191 237

(19.41 %) (80.59 %) (100%)

Figure 4: Estimated probability weights under RDU

4.1.2 Classification of agent types

Based on the previous estimates of risk attitude parameters, we use Akaike Information Crite-
rion (AIC) to classify participants as either EUT, RDU or MVS (see Appendix F for details of
the classification procedure). Doing so, we find that the decisions of 66 (27.85 %), 160 (67.51%)
and 11 (4.64%) participants are best explained by EUT, RDU and MVS, respectively. In sum,
the choices of a vast majority of our participants are in line with RDU. Next, we test the
RIT predictions of the various theories, which are formally stated in Propositions 1 to 3 and
summarized in Table 1.

4.2 RIT and risk attitudes

We start by estimating model-free risk attitudes for all participants. To do that, we compare

the fixed pay in the absence of shock α0
m = 1000 −

β2θ2

4ψ
with the fixed pay α3

m (α4
m) elicited

for shock ϵ = 3 (ϵ = 4). This procedure is used because the minimum value of the fixed
pay an agent is ready to accept in the absence of shock is equal to the minimum fixed pay a
risk-neutral agent would require when ϵ ̸= 0. The difference in the elicited minimum fixed pay
in the presence of a small shock (α3

m) and α
0
m enables us to measure the risk premium of the

agent associated with the contract (α3
m, β). This risk premium equals the difference between

the expected value of the accepted contract (which is calculated as the average of the expected
values of the last accepted and the first rejected contracts), and the outside option (y0 = 1, 000)
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which equals the certainty equivalent of the contract. Thus, an agent is considered to be risk-
averse (risk-seeking) [risk-neutral] if α0

m < α3
m (α0

m > α3
m) [α

0
m = α3

m] given the contract (α3
m, β).

Similarly, the difference in the elicited minimum fixed pay in the presence of a large shock (α4
m)

and α0
m measures the risk premium of the agent associated with the contract (α4

m, β). Thus,
an agent is considered to be risk-averse (risk-seeking) [risk-neutral] if α0

m < α4
m (α0

m > α4
m)

[α0
m = α4

m] given the contract (α4
m, β).

Table 5 provides aggregate estimates of the underlying risk attitudes associated with indi-
vidual choices for the two values of the shock considered in our experiment. Given (α3

m, β), the
percentage of choices in which people are risk-averse, risk-neutral and risk-seeking are 49.96%,
20.34% and 29.70%, respectively. Increasing the shock size when considering the contract
(α4

m, β) shifts these preferences towards more risk-aversion.

Table 5: Risk attitudes and contracts†

Number (%) ϵ = 3 ϵ = 4
Risk-averse (α0

m < αϵm) 1,776 (49.96 %) 2,052 (57.72 %)
Risk-neutral (α0

m = αϵm) 723 (20.34 %) 598 (16.82 %)
Risk-seeking (α0

m > αϵm) 1,056 (29.70 %) 905 (25.46 %)
Total 3,555 (100 %) 3,555 (100 %)

† Note that αϵm is measured as a midpoint of a range of values that is equal to 50, which is 5% of the outside
option value. To account for this imprecision in our measure, we classify a participant as risk-neutral if
|αϵm − α0

m| < 25, risk-averse if αϵm − α0
m ≥ 25 and risk-seeking if αϵm − α0

m ≤ −25.

We now consider individual-level analyses. An agent exhibits RIT (reversed RIT) [no RIT]
if α3

m < α4
m (α3

m > α4
m) [α3

m = α4
m]

14, that is the agent asks for a higher (lower) [identical]
minimum fixed pay for a larger shock. Table 6 provides an overview of our empirical findings
on the occurrence of RIT depending on individual risk attitudes.

Result 1 (RIT and risk attitudes at the individual level): Most risk-averse (50.96%)
and risk-seeking (60.04%) agents make choices that are consistent with RIT. Most risk-neutral
agents (52.42%) make choices that are consistent with the absence of RIT.

According to the theoretical predictions in Table 1, the data should be concentrated on the
diagonal of Table 6 under EUT. However, we observe that only 41.29% of the choices are on
the diagonal, thus rejecting EUT predictions. The main deviation from EUT resides in the
fact that risk-seeking agents also make choices that are consistent with RIT (‘Risk-seeking and
RIT’ cell) – a pattern predicted by RDU, but not by MVS.

We then split the cells in Table 6 according to the estimated risk preferences under EUT,
MVS and RDU (see Tables 11- 13 in Appendix G). In particular, we focus on the decomposition
of the most populated cell in Table 6 (‘Risk-seeking and RIT’). Not surprisingly, most choices
(63.88%) in this cell are characterized by a convex utility function under EUT (see Table 11).
Since agents characterized by a convex utility function should exhibit reversed RIT, our findings
are incompatible with EUT (see Proposition 1).

Under MVS, most choices in the ‘Risk-seeking and RIT’ cell show an aversion to variance
and a preference for positive skewness (61.67%, see Table 13). However, agents should not
exhibit RIT in this case under MVS (see Proposition 3).

Under RDU, most choices in the ‘Risk-seeking and RIT’ cell are characterized by a concave
utility coupled with overweighting of probabilities (61.20%, see Table 12). This pattern is

14RIT could also be defined using the differences α3
m − α0

m and α4
m − α0

m. Instead, we use the term “risk
attitudes” to refer to these differences as they coincide with the existence of a risk premium for contracts (α3

m, β)
and (α4

m, β).
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consistent with RDU, which predicts that RIT is observed for risk-seeking agents when they
exhibit utility risk-aversion and probability risk-seeking (see Propositions 2iii and 4iv, and
Example 1). The alternative pattern of risk-seeking attitudes in which agents exhibit utility
risk-seeking and probability risk-aversion (probability risk-seeking) characterizes only 11.36%
(8.04%) of the choices in the ‘Risk-seeking and RIT’ cell.

A direct implication of Propositions 2v and 3v is that RDU and MVS have opposite pre-
dictions regarding the relationship between the shock magnitude, the variable pay, RIT and
risk-attitudes. To test these predictions, we estimate an ordered logit model (see Table 7) to
assess the effect of the shock magnitude (ϵ) and the variable pay (β) on risk attitudes (first
three columns) and the occurrence of RIT (last three columns).

Result 2 (Shock size, variable pay, individual risk attitudes and RIT) An increase in
the variable pay (β) or the shock size (ϵ) increases the likelihood of risk-aversion while decreas-
ing the likelihood of risk-neutrality and risk-seeking attitudes. In addition, an increase in the
variable pay increases the probability of RIT while decreasing the probabilities of No-RIT and
Reversed-RIT.

Result 2 corroborates the RDU predictions (Proposition 2v) and contradicts MVS (Propo-
sition 3v). This result also contradicts EUT which posits that both RIT and risk attitudes
should not be impacted by changes in the variable pay or the shock.

We now turn to the aggregate analysis of risk attitudes and RIT. Figure 5 plots the aver-
age risk premium associated with a given combination of parameters (p, β, ϵ). Across the 30
combinations, participants are risk-averse (i.e., exhibit positive risk premium) in 80% of the
cases (24 out of 30 combinations). Yet, participants are risk-seeking (i.e., exhibit a negative
risk premium) for (p, β, ϵ) = (0.1, 0.3, 3), (0.25, 0.3, 3) and (0.33, 0.3, 3), and risk-neutral for
(p, β, ϵ) = (0.1, 0.5, 3), (0.1, 0.3, 4) and (0.25, 0.3, 4). In Figure 6 we show that the difference
in minimum fixed pay across shocks (α4

m − α3
m) is systematically positive pointing to RIT at

the aggregate level for all 30 combinations of parameters regardless of risk attitudes. These
aggregate results once again provide support for RDU while contradicting MVS and EUT. We
summarize these aggregate findings below.

Result 3 (RIT at the aggregate level) RIT holds at the aggregate level for all combinations
of parameters.
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Figure 5: Risk premium: α3
m − α0

m and α4
m − α0

m

Figure 6: RIT and the variation in fixed pay α4
m − α3

m
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Table 6: RIT and risk attitudes

Risk attitudes
RIT

RIT : α3
m < α4

m No RIT : α3
m = α4

m Reversed RIT : α3
m > α4

m Total

905 474 397 1776
Risk-averse† : α0

m < α3
m

50.96 % 26.69 % 22.35 % 100 %
231 379 113 723

Risk-neutral† : α0
m = α3

m

31.95 % 52.42 % 15.63 % 100 %
634 238 184 1056

Risk-seeking† : α0
m > α3

m

60.04 % 22.54 % 17.42 % 100 %
1770 1091 694 3555

Total
49.79 % 30.69 % 19.52 % 100 %

† To account for the estimation inaccuracy due to the use of midpoint of the range of possible values of
α3
m (see Figure 3), we classify subject as risk-neutral if |α3

m − α0
m| < 25, risk-averse if α3

m − α0
m ≥ 25 and

risk-seeking if α3
m − α0

m ≤ −25.

Table 7: Ordered logit (average marginal effects)(a)

Risk attitudes RIT
Aversion Neutral Seeking RIT No-RIT Reversed RIT

β 0.882∗∗∗ -0.163∗∗∗ -0.719∗∗∗ 0.376∗∗∗ -0.137∗∗∗ -0.239∗∗∗

ϵ 0.0675∗∗∗ -0.0126∗∗∗ -0.0549∗∗∗ (b) (b) (b)

p -0.020 0.004 0.016 -0.185∗∗∗ 0.068∗∗∗ 0.118∗∗∗

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 for the significance of coefficient tests.

(a) Control variables include: numeracy test score, cognitive reflection test score, gender, and age.
(b) We cannot estimate the margina effect ϵ on RIT because we already exploit the data on both small and
large shocks to estimate RIT.

5 Conclusion

This paper studies the tradeoff between risk and incentives (RIT) under alternatives to the
standard EUT model: the mean-variance-skewness (MVS) model and the the rank-dependent
utility (RDU) model. At a theoretical level, we show that RIT is a robust phenomenon under
RDU (and notwithstanding EUT and MVS) because it can be observed even when agents are
risk-seeking. By contrast, we show that RIT is less robust under MVS than under EUT since
it may not hold even for risk-averse agents, thus offering a possible explanation for the limited
empirical support for the tradeoff.

To test the predictions of the three theories, we develop a novel experimental design that
eliminates the potential confounds appearing in the existing literature. To our surprise, we
found extensive evidence for RIT. Most strikingly, RIT emerges even in situations in which
agents are risk-seeking, which is a distinct prediction of RDU.

Our findings are not only reassuring for the principal-agent theory, but also suggest RIT
predictions can be applied to a broader range of situations than originally anticipated. These
situations include contractual settings in which agents are likely to exhibit risk-seeking attitudes
such as executive compensation (Garen, 1994; Edmans and Gabaix, 2011; Edmans et al., 2012,
2017; Ma et al., 2019). It follows that risk-seeking agents might demand a fixed monetary
compensation for any additional risk. This novel finding can also have interesting implications
in fields like finance and entrepreneurship. For example, financial advisors might need to craft
portfolios with a substantial share of safe assets for clients that are otherwise categorized as risk-
tolerant. Furthermore, our findings suggest that, unlike “Knightian” theory of entrepreneurship
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(Knight, 1921; Kihlstrom and Laffont, 1979; Newman, 2007), risk-seeking entrepreneurs might
want to share part of the risk associated with new ventures.
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Appendix

A- Proofs for Section 2.1.3

EUT

The main implications of Assumptions A0, A1, A2, A3’, A3”, A4, A5 are captured in Proposi-
tion A1.

Proposition A1 (Risk-incentives tradeoff with EUT): Under A0, A1, A2, A3’, A4 and A5
EUT, optimal variable pay β∗(ϵ, r, ψ, θ) decreases with ϵ whereas optimal fixed pay α∗(ϵ, r, ψ, θ)
increases with ϵ.

Proof of Proposition A1
Given the linear contract (α, β), the objective function of an expected utility agent with a

cost function C(e) = ψe2 is given by

EU(L) = pu(y+) + (1− p)u(y−)

with u(y) =
1− exp(−ry)

r
, y+ = α + βθ

(

e+ 1−p
p
ϵ

)

− ψe2 and y− = α + βθ

(

e− ϵ

)

− ψe2

The first-order condition of the agent’s maximization problem is given by

(βθ − 2ψe)[pu′(y+) + (1− p)u′(y−)] = 0

Since pu′(y+) + (1− p)u′(y−) ̸= 0, it turns out that the best response effort function of the
agent is given by

e =
βθ

2ψ

Hence, the best response effort function is an increasing function of the variable pay and
does not vary with respect to the shock ϵ, the relative risk-aversion coefficient r and the fixed
pay α. The proof with p = 1/2 is provided in Appendix A2 of Corgnet and Hernan-Gonzalez
(2019). The optimization problem of the principal is to maximize the expected value of θz − y
by accounting for agent’s incentive compatibility constraint (IC) and participation constraint
(PC)



























max
α,β

θe− (α + βθe)

s.t. :

e = βθ

2ψ

α + βθe− ψe2 −
1− p

2p
rβ2θ2ϵ2 ≃ y0

The participation constraint is an application of the Pratt (1964) approximation of the risk
premium to the agent’s maximization problem as in Milgrom and Roberts (1992). The optimal
linear contact (α∗, β∗) of the principal is given by

β∗(ϵ, r, ψ, θ) ≃
1

1 + 2ψrϵ2 1−p
p

(5)

α∗(ϵ, r, ψ, θ) ≃ y0 +
1

2

(1− p

p
rϵ2 −

1

2ψ

)(

θβ∗(ϵ, r, ψ, θ)
)2

(6)

Furthermore, the expression of β∗(ϵ, r, ψ, θ), yields
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∂β∗(ϵ, r, ψ, θ)

∂ϵ
< 0

∂β∗(ϵ, r, ψ, θ)

∂r
< 0

For k = 1−p
p
ϵ, Assumption 3” yields r[α + βθk] < 1. Using e > ϵ and e = βθ

2ψ
, we have

1− p

p
rϵ2 −

1

2ψ
< 0 (7)

Inequalities (7) and (6) jointly imply

sign
(∂α∗(ϵ, r, ψ, θ)

∂t

)

= −sign
(∂β∗(ϵ, r, ψ, θ)

∂t

)

for t = ϵ, r, ψ, θ

In particular

∂α∗(ϵ, r, ψ, θ)

∂ϵ
> 0

∂α∗(ϵ, r, ψ, θ)

∂r
> 0

Remark: expressions (5) and (6) also hold for risk-neutral agent (r = 0) and risk-seeking
agent (r < 0) as long as the second-order condition obtained from the derivative of the first-
order condition A1.2 is negative. Hence, for a risk-neutral agent the fixed pay and performance
do not vary with ϵ. For a risk-seeking agent, we have reversed RIT. Also, note that the agent’s
optimal level of effort e∗ is given by

e =
θ

2ψ
β∗(ϵ, r, ψ, θ)

It turns out that the partial derivatives
∂e∗(ϵ, r, ψ, θ)

∂ϵ
and

∂e∗(ϵ, r, ψ, θ)

∂r
are negatives as

∂α∗(ϵ, r, ψ, θ)

∂ϵ
and

∂α∗(ϵ, r, ψ, θ)

∂r
are negative.

QED.

RDU

Before showing the proofs, let us first state and provide some explanations of Lemma 1 and
Propositions A2 and A3. Under RDU, we derive our first lemma below:

Lemma 1 Under RDU, maximizing the objective function of the agent amounts to maximizing
his certainty equivalent CE:

CE = α+ βθe−ψe2 +
(w(p)

p
− 1
)

−
β2θ2ϵ2

2

(

1+
w(p)

p

1− 2p

p

)

Aa

(

α+ βθe−ψe2
)

+ o(ϵ2) (8)

with Aa(z) = −
u′′(z)

u′′(z)
being the absolute risk-aversion index evaluated at the outcome z and

o(ϵ2) denoting the approximation error.
Lemma 1 provides an approximation of the certainty equivalent. This approximation allows us
to generate a closed-form solution for the optimal contract (α∗, β∗) by assuming CARA utility
function (Milgrom and Roberts, 1992), that is Aa(z) = r for all z. Similar to EUT, we capture
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RIT in RDU in Proposition A2ii below.

Proposition A2 (RIT with RDU).15 Under A0, A1, A2, A3’, A3”, A4, A5 and assuming
RDU agent, for any probability p ∈ (0, 1):
i) Optimal variable pay β∗(ϵ, r, w(p), ψ, θ) decreases with r and probability risk-aversion whereas
the fixed pay α∗(ϵ, r, w(p), ψ, θ) increases with r and probability risk-aversion.
ii) If the agent exhibits probability risk-aversion, the optimal variable pay β∗(ϵ, r, w(p), ψ, θ)
decreases with ϵ whereas the optimal fixed pay α∗(ϵ, r, w(p), ψ, θ) increases with ϵ.
iii) If the agent exhibits probability risk-seeking, there is rto(β

∗, ϵ) such that for r < rto(β
∗, ϵ) the

optimal variable payβ∗(ϵ, r, w(p), ψ, θ) increases with ϵ and the optimal fixed pay α∗(ϵ, r, w(p), ψ, θ)
decreases with ϵ.

Proposition A2iii points to the absence of RIT under probability risk-seeking. Furthermore,
Proposition A3 provides results on RIT under general risk attitudes which are a combination
of utility curvature and probability risk attitudes.

Proposition A3 (Risk attitudes and absence of tradeoff with RDU): Assume that the
agent exhibits probability risk-seeking for a given probability p. Let rN(β

∗, ϵ) be the absolute
risk-aversion index that allows probability risk-seeking agent to exhibit risk-neutrality for the
lottery

L =

(

α∗ + β∗θ

(

e∗ +
1− p

p
ϵ

)

− ψe∗2, α∗ + β∗θ

(

e∗ − ϵ

)

− ψe∗2; p, 1− p

)

associated with the optimal linear contract (α∗, β∗). Then, rN(β
∗, ϵ) > rto(β

∗, ϵ).

Figure 7 illustrates Proposition A3. It shows that, in line with RIT a principal facing
a risk-averse agent who exhibits probability risk-seeking proposes an optimal variable pay
β∗(ϵ, r, w(p), ψ, θ) that decreases in ϵ. In addition, a principal facing an agent who exhibits
probability risk-seeking with absolute risk-aversion index r ∈

(

rto(β
∗, ϵ), rN(β

∗, ϵ)
)

also pro-
poses an optimal variable pay β∗(ϵ, r, w(p), ψ, θ) that decreases in ϵ. Note that such agent
exhibits risk-seeking behavior since r < rN(β

∗, ϵ). Finally, the principal only proposes an op-
timal variable pay β∗(ϵ, r, w(p), ψ, θ) that increases in ϵ when facing an agent that exhibits
probability risk-seeking with absolute risk-aversion index r ∈

(

0, rto(β
∗, ϵ)

)

. Unlike EUT, RIT
under RDU depends on the probability of the binary shock and becomes more pervasive because
it now applies to risk-seeking agent (on top of risk-averse agent, as in EUT).

r•

rN(β
∗, ϵ)Risk seeking Risk aversion

Risk aversion + RITRisk seeking + Reversed-RIT Risk seeking + RIT

r•

rto(β
∗, ϵ)Reversed-RIT RIT

Figure 7: Risk attitudes and RIT with RDU (agent exhibits w(p) > p )

Proof of Lemma 1

15In Appendix E, we extend proposition A2 to the case of the prospect theory agent exhibiting loss aversion
and reference-dependence.
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In the Lemma, we derive an equivalent of the Pratt (1964) approximation of risk premium for
RDU and use it to provide incentive compatibility and participation constraints as in Milgrom
and Roberts (1992). To do so, let us first consider a binary random variable x̃ =

(

x+ 1−p
p
σ, x−

σ; p, 1− p
)

with σ > 0, p ∈ (0, 1) so that E(x̃) = x and V (x̃) = 1−p
p
σ2. Under RDU theory, the

certainty equivalent (ce) of x̃ satisfies

u(ce) = w(p)
[

u
(

x+
1− p

p
σ
)

− u
(

x− σ
)

]

+ u
(

x− σ
)

(9)

Applying second-order Taylor approximation to the right-hand side (RHS) of expression (9)
around the expected value x leads to

RHS = u(x) + σ
(w(p)

p
− 1
)

u′(x) +
σ2

2

(

1 +
w(p)

p

1− 2p

p

)

u′′(x) + o(σ2) (10)

with o(σ2) denoting the approximation error such that lim
σ−→0

o(σ2)

σ2
= 0.

We furthermore impose the following linear form for the certainty equivalent with an un-
known slope a

ce = x+ aσ2 + o(σ2) (11)

Plugging (11) into (9) and applying first-order Taylor approximation on the left-hand side
(LHS) of the expression (9) around the expected value x yields

LHS = u(x) + aσ2u′(x) + o(σ2) (12)

Since LHS=RHS, according to (9), we can identify the unknown slope a

a =
1

σ

(w(p)

p
− 1
)

+
1

2

(

1 +
w(p)

p

1− 2p

p

)u′′(x)

u′(x)
(13)

Let Aa(z) = −
u′′(z)

u′′(z)
be the absolute risk-aversion index evaluated at x. Plugging (13)

in (11) gives the Pratt (1964) risk premium π under RDU for the binary random variable
x̃ =

(

x+ 1−p
p
σ, x− σ; p, 1− p

)

.

π := x− ce = −
(w(p)

p
− 1
)

σ +
σ2

2

(

1 +
w(p)

p

1− 2p

p

)

Aa(x) + o(σ2) (14)

So that the certainty equivalent is

ce = x+
(w(p)

p
− 1
)

σ −
σ2

2

(

1 +
w(p)

p

1− 2p

p

)

Aa(x) + o(σ2) (15)

Note that RDU becomes EUT if w(p) = p. Since V (x̃) = 1−p
p
σ2, (14) collapses to the usual

Pratt (1964) formula π = −1
2
u′′(x)
u′(x)

V (x̃) + o(σ2) whenever w(p) = p. Relation (15) allows us to

define the incentive compatibility and participation constraints. In the context of RDU (see
Section 2), we set x = α + βθe − ψe2 and σ = βθϵ so that the certainty equivalent equation
(15) becomes:

ce = α+βθe−ψe2+
(w(p)

p
−1
)

βθϵ−
β2θ2ϵ2

2

(

1+
w(p)

p

1− 2p

p

)

Aa

(

α+βθe−ψe2
)

+o(ϵ2) (16)

QED.
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Proof of Proposition A2
Given the linear contract (α, β), the objective function of a RDU agent with cost function

C(e) = ψe2 is given by

RDU(L) = w(p)u(y+) + (1− w(p))u(y−)

with u(x) =
1− exp(−rx)

r
, y+ = α + βθ

(

e+ 1−p
p
ϵ

)

− ψe2 and y− = α + βθ

(

e− ϵ

)

− ψe2

The first-order condition of the agent’s maximization problem is given by

(βθ − 2ψe)[w(p)u′(y+) + (1− w(p))u′(y−)] = 0

Since w(p)u′(y+)+ (1−w(p))u′(y−) ̸= 0, it turns out that the optimal effort function of the
agent is given by

e =
βθ

2ψ

Hence, the optimal effort function is increasing in the variable pay and does not vary with
respect to chock ϵ, the relative risk-aversion coefficient r, the fixed pay α and probability risk
attitude w(p).

Point i)
The optimization problem of the principal is to maximize the expected value of θz − y by

accounting for the agent’s incentive compatibility constraint (IC) and participation constraint
(PC):



























max
α,β

π = θe− (α + βθe)

s.t. :

e = βθ

2ψ

α + βθe− ψe2 +
(

w(p)
p

− 1
)

βθϵ− β2θ2ϵ2

2

(

1 + w(p)
p

1−2p
p

)

r ≃ y0

Like in Proposition A1 above, the participation constraint is an application of the Pratt
(1964) approximation of the risk premium. The optimal linear contact (α∗, β∗) of the principal
is given by

β∗(ϵ, r, w(p), ψ, θ) ≃
1 + 2ψϵ

θ

(

w(p)
p

− 1
)

1 + 2ψrϵ2
(

1 + w(p)
p

1−2p
p

) (17)

α∗(ϵ, r, w(p), ψ, θ) ≃ y0+
1

2

[

rϵ2
(

1+
w(p)

p

1− 2p

p

)

−
1

2ψ

](

θβ∗(ϵ, r, w(p), ψ, θ)
)2

−ϵθβ∗(ϵ, r, w(p), ψ, θ)

(18)
Expression (17) implies that

Sign
(∂β∗(ϵ, r, w(p), ψ, θ)

∂r

)

= −Sign

(

1 +
w(p)

p

1− 2p

p

)

× Sign

(

1 +
2ψϵ

θ

(w(p)

p
− 1
)

)

(19)

Note that 1 + w(p)
p

1−2p
p

= w(p)
(

1−p
p

)2

+ 1− w(p). Since w(p) < 1, it turns out that

1 +
w(p)

p

1− 2p

p
> 0 (20)
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This means that the certainty equivalent ce (16) decreases in r (or equivalently, the risk
premium increases in r).16

Since β∗(ϵ, r, w(p), ψ, θ) is positive, the relation 20 and the expression of β∗(ϵ, r, w(p), ψ, θ)
jointly imply that

1 +
2ψϵ

θ

(w(p)

p
− 1
)

> 0 (21)

Plugging (20) and (21) into the relation (19) yields

∂β∗(ϵ, r, w(p), ψ, θ)

∂r
< 0

For k =
(

1 + w(p)
p

1−2p
p

)

ϵ > 0, we have under Assumption 3” that r[α+ βθk] < 1. Then, for

e > ϵ and e = βθ

2ψ
, we have that

rϵ2
(

1 +
w(p)

p

1− 2p

p

)

−
1

2ψ
< 0 (22)

Relations (22) and (18) imply for t = ϵ, r, w(p), ψ, θ that

sign
(∂α∗(ϵ, r, w(p), ψ, θ)

∂t

)

= −sign
(∂β∗(ϵ, r, w(p), ψ, θ)

∂t

)

(23)

In particular, we have that

∂α∗(ϵ, r, ψ, θ)

∂r
> 0

From (17), we have that

Sign
(∂β∗(ϵ, r, δ, ψ, θ)

∂δ

)

= Sign

(

1− rθϵ
1− 2p

p
+ 2ψrϵ2

1− p

p

)

(24)

with δ = w(p). Let us now consider (24) under two cases: p ≥ 1
2
and p < 1

2
.

For p ≥ 1
2
, we have 1−2p

p
≤ 0 so that

∂β∗(ϵ, r, δ, ψ, θ)

∂δ
is positive.

For p < 1
2
, we have 1−2p

p
> 0. Take k = ϵ

β∗(ϵ,r,δ,ψ,θ)
1−2p
p

> 0. It follows from Assumption 3”

that 1− rθβ∗(ϵ, r, w(p), ψ, θ)k = 1− rθϵ1−2p
p

> 0. Thus, for p < 1
2
we have

∂β∗(ϵ, r, δ, ψ, θ)

∂δ
also

positive. This means that for all p

∂β∗(ϵ, r, δ, ψ, θ)

∂δ
> 0 (25)

From (23) and (25), it also follows that

∂α∗(ϵ, r, δ, ψ, θ)

∂δ
< 0 (26)

Note that probability risk-aversion corresponds to a lower level of δ. Hence, equations (25)
and (26) mean that the optimal variable pay β∗(ϵ, r, δ, ψ, θ) decreases as the probability risk-
aversion increases while the fixed pay α∗(ϵ, r, δ, ψ, θ) increases as the probability risk-aversion
increases.

Point ii)

16See also Theorem 6.1 in Eeckhoudt and Laeven (2015).
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It follows from the expression (17) that

Sign
(∂β∗(ϵ, r, δ, ψ, θ)

∂ϵ

)

= Sign
(

A(ϵ, r, δ, ψ, θ)
)

(27)

with

A(ϵ, r, δ, ψ, θ) = θ−1
(w(p)

p
− 1
)

[

1− 2ψrϵ2
(

1 +
w(p)

p

1− 2p

p

)

]

− 2rϵ
(

1 +
w(p)

p

1− 2p

p

)

(28)

From 20 and 22 we have respectively that 1+ w(p)
p

1−2p
p

> 0 and 1−2ψrϵ2
(

1+ w(p)
p

1−2p
p

)

> 0

. If the agent exhibits probability risk-aversion or probability risk-neutral for probability p (i.e.,
w(p) ≤ p), (27) and (28) jointly imply

∂β∗(ϵ, r, δ, ψ, θ)

∂ϵ
< 0

while (23) implies

∂α∗(ϵ, r, δ, ψ, θ)

∂ϵ
> 0

Recall that e∗(ϵ, r, δ, ψ, θ) = θ
2ψ
β∗(ϵ, r, δ, ψ, θ). Hence,

∂e∗(ϵ, r, δ, ψ, θ)

∂ϵ
< 0 as

∂β∗(ϵ, r, δ, ψ, θ)

∂ϵ
< 0

Point iii) Assume that the agent exhibits probability risk-seeking for probability p (i.e.,
w(p) > p). Hence, (27) and (28) jointly imply the following equivalence

r < rto(β
∗, ϵ) ⇐⇒

∂β∗(ϵ, r, ψ, θ)

∂ϵ
> 0

with

rto(β
∗, ϵ) ∼=

1

2ϵ

w(p)
p

− 1
(

θ + ϵψ
(

w(p)
p

− 1
)

)(

1 + w(p)
p

1−2p
p

) (29)

From (23), it also follows that

r < rto(β
∗, ϵ) ⇐⇒

∂α∗(ϵ, r, δ, ψ, θ)

∂ϵ
< 0

Since e∗(ϵ, r, δ, ψ, θ) = θ
2ψ
β∗(ϵ, r, δ, ψ, θ), we have

r < rto(β
∗, ϵ) ⇐⇒

∂e∗(ϵ, r, ψ, θ)

∂ϵ
> 0

Also, we have

∂e∗(ϵ, r, δ, ψ, θ)

∂r
< 0 as

∂β∗(ϵ, r, δ, ψ, θ)

∂r
< 0

∂e∗(ϵ, r, δ, ψ, θ)

∂δ
> 0 as

∂β∗(ϵ, r, δ, ψ, θ)

∂δ
> 0
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QED.

Proof of Proposition A3

From Lemma 1, the absolute risk-aversion index rN(β
∗, ϵ) that makes an agent with prob-

ability risk-seeking behavior to exhibit risk-neutrality (i.e., null risk premium) for the lottery

L∗ =

(

α∗ + θβ∗

(

e∗ +
1− p

p
ϵ

)

− ψe∗2, α∗ + θβ∗

(

e∗ − ϵ

)

− ψe∗2; p, 1− p

)

associated with the optimal linear contract (α∗, β∗) and optimal effort e∗ is given by

rN(β
∗, ϵ) ∼=

2

ϵθβ∗

δ
p
− 1

1 + δ
p

1−2p
p

with δ = w(p).
From Proposition A2, the threshold rto(β

∗, ϵ) of the absolute risk-aversion index of an agent
with probability risk-seeking behavior that leads the principal to propose an optimal variable
pay β∗(ϵ, r, δ, ψ, θ) that decreases in ϵ is

rto(β
∗, ϵ) ∼=

1

2ϵ

w(p)
p

− 1
(

θ + ϵψ
(

w(p)
p

− 1
)

)(

1 + w(p)
p

1−2p
p

)

Computing the difference between the two thresholds leads to

Sign
(

rN(β
∗, ϵ)− rto(β

∗, ϵ)
)

= Sign

[

N
(

β∗(ϵ, r, δ, ψ, θ)
)

]

with

N
(

β∗(ϵ, r, δ, ψ, θ)
)

= 4− β∗(ϵ, r, δ, ψ, θ) +
4ϵψ

θ

(

w(p)

p
− 1

)

Recall that
∂β∗(ϵ, r, δ, ψ, θ)

∂r
< 0 so that we have

∂N
(

β∗(ϵ, r, δ, ψ, θ)
)

∂r
< 0. Further-

more, we have lim
r−→0

N(β∗(ϵ, r, δ, ψ, θ)) = 3 +
2ϵψ

θ

(w(p)

p
− 1
)

. Hence, for all r > 0 we have

N
(

β∗(ϵ, r, δ, ψ, θ)
)

> 0 so that rN(β
∗, ϵ) > rto(β

∗, ϵ).

QED.

MVS

Before providing the proofs, we first state and provide some explanations for Propositions A4
and A5.
Proposition A4 (Risk-incentives tradeoff with MVS). Under A0, A1, A2 and A4 and
assuming the agent is MVS as specified in (4):
i) Optimal variable pay β∗(ϵ, av, as, ψ, θ) decreases with av
ii) Optimal variable pay β∗(ϵ, av, as, ψ, θ) increases (resp. decreases) with as for p < 1

2
(resp.

p > 1
2
).
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iii) If p ≥ 1
2
, the optimal variable pay β∗(ϵ, av, as, ψ, θ) decreases with ϵ.

iv) If p < 1
2
, there is g(ϵ, p, av, as, ψ, θ) such that if g(ϵ, p, av, as, ψ, θ) <

9
4
, then β∗(ϵ, av, as, ψ, θ)

increases with ϵ.
Proposition A4iv shows that the absence of the tradeoff can be expected for p<1/2, i.e.,

when the lottery

L∗ =

(

α∗ + θβ∗

(

e∗ +
1− p

p
ϵ

)

− ψe∗2, α∗ + θβ∗

(

e∗ − ϵ

)

− ψe∗2; p, 1− p

)

associated with the optimal contract (α∗, β∗) is positively skewed. Since risk attitudes are
driven by both aversions to variance and preference for positive skewness, it remains unclear
if the absence of the tradeoff arises for a risk-seeking or a risk-averse agent. Proposition B5
provides such information.
Proposition A5 (Risk attitudes and absence of tradeoff with MVS):
Consider p<1/2. Hence, we have the following results:
i) At the optimal contract, agent’s risk-aversion (risk-seeking) corresponds to g(ϵ, p, av, as, ψ, θ) >
1 ( g(ϵ, p, av, as, ψ, θ) < 1)
ii) If the agent is a risk-seeker, then the optimal variable pay β∗(ϵ, p, av, as, ψ, θ) increases with
ϵ

iii) For g(ϵ, p, av, as, ψ, θ) ∈
(

1,
9

4

)

, the agent exhibits risk-aversion and the optimal variable

pay β∗ increases with ϵ.
According to Proposition A5, if the agent exhibits risk-seeking behavior at the optimal

contract proposed by the principal, then the optimal variable pay β∗(ϵ, p, av, as, ψ, θ) increases
with ϵ. However, if the agent is risk-averse at the optimal contract proposed by the principal
[i.e., g(ϵ, p, av, as, ψ, θ) > 1], the optimal variable pay β∗(ϵ, p, av, as, ψ, θ) can either increase or
decrease with ϵ depending on whether g(ϵ, p, av, as, ψ, θ) is greater or smaller than 9

4
.

Remark [RDU vs. MVS]: Proposition A5 echoes Proposition A3 for RDU once we
consider, in line with literature (e.g., Gonzalez and Wu, 1999; Tversky and Wakker, 1995;
Gonzalez-Jimenez, 2019; Kpegli et al., 2022), that overweighting occurs for p < 1

2
. Then, both

MVS and RDU predict the possibility of the absence of tradeoff only for p < 1
2
. However, the

MVS and RDU provide different rationale for the absence of tredeoff. The RDU rules out the
possibility of the absence of the tradeoff for a risk-averse agent. In contrast, MVS points to the
absence of tradeoff for certain risk-averse agent and all risk-seeking agents.

Proof of Proposition A4:
Given the linear contract (α, β), the objective function of an MVS agent with a cost function

C(e) = ψe2 is given by

MV S(L) = α + βθe− ψe2 + av
1− p

p
β2θ2ϵ2 + as

1− p

p

1− 2p

p
β3θ3ϵ3

The first-order condition of the agent’s maximization problem leads to the optimal effort
function e(β) that increases in the variable pay:

e =
βθ

2ψ

The principal’s optimization problem is to maximizes the expected value of θz − y by
accounting for the agent’s incentive compatibility constraint (IC) and participation constraint
(PC).
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





















max
α,β

θe− (α + βθe)

s.t. :

e = βθ

2ψ

α + βθe− ψe2 + av
1−p
p
β2θ2ϵ2 + as

1−p
p

1−2p
p
β3θ3ϵ3 ≃ y0

which is equivalent to

max
β

θ2

[

β

2ψ
+ av

1− p

p
β2ϵ2 + as

1− 2p

p

1− p

p
β3θϵ3 −

β2

4ψ

]

− y0

The first-order condition is given by

1

2ψ
+ 2avβ

1− p

p
ϵ2 + 3as

1− 2p

p

1− p

p
β2θϵ3 −

β

2ψ
= 0 (30)

The second-order condition is given by

2av
1− p

p
ϵ2 + 6as

1− 2p

p

1− p

p
βθϵ3 −

1

2ψ
< 0 (31)

Equation (30) implicitly defines the optimal variable pay β∗(ϵ, av, as, ψ, θ). In particu-
lar, it follows that the optimal variable pay in the absence of shock (ϵ = 0) is given by
β∗(0, av, as, ψ, θ) = 1. Moreover, for as −→ 0 we have

lim
as−→0

β∗(ϵ, av, as, ψ, θ) =
1

1− 4av
1−p
p
ψϵ2

< 1 = β∗(0, av, as, ψ, θ)

Also, for p = 1
2
, we have β∗(ϵ, av, 0, ψ, θ) =

1

1− 4av
1−p
p

.

For ϵ > 0 and p ̸= 1
2
, the two possible solutions of (30) are given by

β∗
1(ϵ, av, as, ψ, θ) =

1
2ψ

− 2av
1−p
p
ϵ2 −

√

(

2av
1−p
p
ϵ2 − 1

2ψ

)2

− 6as
1−2p
p

1−p
p

θϵ3

ψ

6as
1−2p
p

1−p
p
θϵ3

β∗
2(ϵ, av, as, ψ, θ) =

1
2ψ

− 2av
1−p
p
ϵ2 +

√

(

2av
1−p
p
ϵ2 − 1

2ψ

)2

− 6as
1−2p
p

1−p
p

θϵ3

ψ

6as
1−2p
p

1−p
p
θϵ3

When ϵ > 0, the right solution needs to satisfy the continuity condition lim
ϵ−→0

β∗
i (ϵ, av, as, ψ, θ) =

1, i = 1, 2. Using this continuity condition, and applying l’Hôpital’s rule, it follows that the
solution is given by β∗

1(ϵ, av, as, ψ, θ):
17

β∗(ϵ, av, as, ψ, θ) =

1
2ψ

− 2av
1−p
p
ϵ2 −

√

(

2av
1−p
p
ϵ2 − 1

2ψ

)2

− 6as
1−2p
p

1−p
p

θϵ3

ψ

6as
1−2p
p

1−p
p
θϵ3

(32)

Point i and ii)
Implicit function theorem on (30) leads to

17Another way to find the right solution is to plug the two possible solutions into the second-order condition
(31) to see that it is solely satisfied by (32).
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∂β∗(ϵ, av, as, ψ, θ)

∂av
> 0

Since e∗(ϵ, av, as, ψ, θ) =
θ
2ψ
β∗(ϵ, av, as, ψ, θ), it also follows

∂e∗

∂av
> 0. Note that the aversion

to variance corresponds to av < 0. Hence,
∂β∗

∂av
> 0 and

∂e∗

∂av
> 0 mean that the optimal variable

pay and optimal effort both decrease as the aversion to variance increases.
Also, from (30) we have that

∂β∗

∂as
> 0 if p <

1

2
(positive skewness)

∂β∗

∂as
< 0 if p >

1

2
(negative skewness)

The optimal variable pay increases as the preference for positive skewness increases if p < 1
2

(i.e., positive skewness) and decreases as the preference for positive skewness increases if p > 1
2

(i.e., negative skewness). Also, because e∗(ϵ, av, as, ψ, θ) =
θ

2ψ
β∗(ϵ, av, as, ψ, θ), it also follows

∂e∗

∂as
> 0 if p <

1

2
(positive skewness)

∂e∗

∂as
< 0 if p >

1

2
(negative skewness)

Point iii)

From (30), the implicit function theorem implies that

Sign

[

∂β∗

∂ϵ

]

= Sign

[

4av + 9as
1− 2p

p
θϵβ∗(ϵ, av, as, ψ, θ)

]

(33)

with β∗(ϵ, av, as, ψ, θ) given in (32) Since av < 0, as > 0 and β∗(ϵ, av, as, ψ, θ) > 0 it turns

out that for p ≥ 1
2
we have

∂β∗

∂ϵ
< 0.

Since e∗(ϵ, av, as, ψ, θ) =
θ

2ψ
β∗(ϵ, av, as, ψ, θ), it also follows that

∂e∗

∂ϵ
< 0 for p ≥ 1

2
.

Point iv)

For p < 1
2
, either ∂β∗

∂ϵ
< 0 and ∂β∗

∂ϵ
> 0 are possible according to (33) and (32). Replacing

(32) in (33), it turns out that

∂β∗

∂ϵ
> 0 ⇐⇒ g(ϵ, av, as, ψ, θ) <

9

4
(34)

with

g(ϵ, av, as, ψ, θ) := −
6av

1−p
p
ϵ2

1
2ψ

− 2av
1−p
p
ϵ2 −

√

(

2av
1−p
p
ϵ2 − 1

2ψ

)2

− 6as
1−2p
p

1−p
p

θϵ3

ψ

(35)

Since e∗(ϵ, av, as, ψ, θ) =
θ

2ψ
β∗(ϵ, av, as, ψ, θ), it also follows that when p <

1
2
we have ∂e∗

∂ϵ
> 0

if and only if g(ϵ, av, as, ψ, θ) <
9
4
.
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For example, Spiliopoulos and Hertwig (2019) estimate av = −0.0229 and as = 0.0037.
Using these estimated values and setting (ϵ, p, ψ, θ) = (0.7, 0.1, 0.5, 1), the condition (34) holds.
This yields β∗(ϵ, av, as, ψ, θ) = 1.12 which is greater than the variable pay of 1 corresponding
to the absence of noise.
QED.

Proof of Proposition A5:
Point i)

At the optimal contract, the agent is risk-averse if av + as
1− 2p

p
θϵβ∗(ϵ, av, as, ψ, ϕ) < 0 and

risk-seeking if av + as
1−2p
p
θϵβ∗(ϵ, av, as, ψ, θ) > 0. Using the expression (32) of β∗(ϵ, av, as, ψ, θ)

it follows that the agent is risk-averse at the optimal contract if g(ϵ, av, as, ψ, θ) > 1 and risk-
seeking if g(ϵ, av, as, ψ, θ) < 1.

Point ii)

First, note that for any p < 1
2
and variable pay β > 0 we have

av +
9

4
as
1− 2p

p
βθϵ > av + as

1− 2p

p
βθϵ (36)

Second, for any p < 1
2
and a given triplet (α, β, e), the MVS decision maker exhibits risk-

seeking for the positively skewed lottery L =

(

α + θβ

(

e + 1−p
p
ϵ

)

− ψe2, α + θβ

(

e − ϵ

)

−

ψe2; p, 1− p

)

if

av + as
1− 2p

p
βθϵ > 0 (37)

Hence, if the agent exhibits risk-seeking for the optimal triplet (α∗, β∗, e∗), then we should
have

av + as
1− 2p

p
β∗θϵ > 0 (38)

Given the expression (32) of the optimal variable pay β∗(ϵ, av, as, ψ, θ), the condition (38)
holds iff

g(ϵ, av, as, ψ, θ) < 1 (39)

with g(ϵ, av, as, ψ, θ) given in (35).
It follows that when the condition (38) holds, the agent exhibits risk-seeking for the posi-

tively skewed lottery L∗ =

(

α∗+θβ∗

(

e∗+ 1−p
p
ϵ

)

−ψe∗2, α∗+θβ∗

(

e∗−ϵ

)

−ψe∗2; p, 1−p

)

. Being

risk-seeking means that (39) holds, and hence from (36) we have that the optimal variable pay

satisfies av+as
1− 2p

p
β∗θϵ > 0. Hence, we have

∂β∗

∂ϵ
> 0 and in particular β∗(ϵ, av, as, ψ, θ) > 1

for ϵ > 0.

Point iii)
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For any p < 1
2
and an agent who exhibits risk-aversion at the optimal triplet (α∗, β∗, e∗)

with an optimal variable pay β∗ that increases with ϵ, we have

av + as
1− 2p

p
β∗θϵ < 0 < av +

9

4
as
1− 2p

p
β∗θϵ (40)

Given the expression (32) for the optimal variable pay β∗(ϵ, av, as, ψ, θ), the condition that
ensures (40) is given by

g(ϵ, av, as, ψ, θ) ∈

(

1,
9

4

)

(41)

with g(ϵ, av, as, ψ, θ) given in (35).
It follows that when the condition (41) holds, the agent exhibits risk-aversion at the optimal

triplet (α∗, β∗, e∗) such that variable payβ∗ increases with ϵ.
QED.

B- Extension to general utility function

In section 2, we employ the LEN model with CARA utility function. This approach provides a
closed-form solution to the principal-agent problem through the Arrow-Pratt approximation of
the risk premium. We investigate the robustness of the results under general utility specifica-
tion for EUT and RDU. Denote by Aa(z) = −u′′(x)

u′(x)
the absolute risk-aversion index evaluated

at x.

We provide the followings results and their proofs.
Proposition B1 (Consistency of results under EUT): the optimal variable pay is a

decreasing function of ϵ.
Proposition B1 shows that the tradeoff between risk and incentives in EUT framework does

not depend on the utility function specifications and is not driven by approximation errors in
the Arrow-Pratt risk premium.

Example 3 (An illustration of Proposition B1 using expo-power utility function):
To illustrate this point, we consider the expo-power utility function (Saha, 1993) u(z) =

1−exp(−rzγ)
r

of which CARA (CRRA) is a special case when r = 1 (r −→ 0). The alternative

level of utility is given by y0 =
1−exp(−ryγ

0
)

r
with y0 being the alternative (outside) outcome. We

set (r, γ) = (0.029, 0.731) as found by Holt and Laury (2002) and (ψ, θ, y0) = (0.5, 1, 4). In
the absence of shock (ϵ = 0), the optimal variable pay is β∗ = 1 and the optimal fixed pay
is α∗ = 3.5. In the presence of shock (ϵ, p) = (1, 0.5), the optimal variable pay is β∗ = 0.89
and the optimal fixed pay is α∗ = 3.65. Hence, the optimal variable pay in absence of shock is
indeed greater than the variable pay in the presence of the shock.18

Proposition B2 (Consistency of results under RDU):
i) If the agent’s absolute risk-aversion index does not sufficiently decrease with the outcome,
then the optimal variable pay decreases with the probability risk-aversion.
ii) If the agent exhibits probability risk-aversion or probability risk-neutrality, then the optimal
variable pay decreases with ϵ.
iii) Assume the agent exhibits probability risk-seeking and that for any couple (α, β) the ratio
between the average slope of the probability weighting function on the interval (0, p) and the

18Note that the problem does not have an explicit analytic solution. Our solution is numerical.
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average slope of the probability weighting on the interval (p, 1) are greater than the ratio be-
tween the slope of the utility function at the lowest possible value of the reward (net of cost)
and the slope of the utility function at the highest possible value (net of cost). Then, the
optimal variable pay is greater in the presence of shock than in its absence.

iv) There exist Atoa (β) such that if the agent exhibits probability risk-seeking and Aa

(

α+β2θ2

4ψ

)

<

Atoa (β, ϵ) for any couple (α, β), then the optimal variable pay is greater in the presence of the
shock than in its absence.

Proposition B3 (Risk attitudes and absence of tradeoff with RDU):
Assume that the agent exhibits probability risk-seeking for a given probability p. Denote by

ANa

(

α∗ + β∗2θ2

4ψ

)

the absolute risk-aversion index that allows a probability risk-seeking agent to

exhibit risk-neutrality for the lottery L∗ =

(

α∗ + θβ∗

(

e∗ + 1−p
p
ϵ

)

− ψe∗2, α∗ + θβ∗

(

e∗ − ϵ

)

−

ψe∗2; p, 1 − p

)

associated with the optimal linear contract (α∗, β∗). Then, ANa

(

α∗ + β∗2θ2

4ψ

)

>

Atoa (β
∗, ϵ).

Propositions B2 and B3 are generalizations of Propositions A2 and A3. They show that
the results on the comparisons of the variable pay in the absence of shock and in its presence
shown under CARA utility function specification also hold under a general setting where the
utility function is just required to be increasing and concave.

Example 4 (An illustration of Proposition B3: presence of tradeoff with risk-seeking
agent using expo-power utility function): Consider again the expo-power utility function

u(z) = 1−exp(−rzγ)
r

with (r, γ) = (0.029, 0.731) as found by Holt and Laury (2002). We set
(ψ, θ, y0) = (0.5, 1, 4), with y0 being the alternative (outside) outcome. In the absence of shock
(ϵ = 0), the optimal variable pay is β∗ = 1 and the optimal fixed pay is α∗ = 3.5. In the
presence of shock, we set (ϵ, p, w(p)) = (1, 0.1, 0.15). The optimal variable pay is β∗ = 0.95 and
the optimal fixed pay is α∗ = 3.37. The optimal variable pay in the absence of shock is greater
than the variable pay in the presence of shock. We have the expected value E[L∗] = 3.83
and the certainty equivalent of L∗ is 4. Hence, the agent exhibits risk-seeking at the optimal
contract (α∗, β∗) = (3.37, 0.95) where the tradeoff between risk and incentives is observed.

Example 5 (An illustration of Proposition 12: absence of tradeoff with risk-seeking
agent using expo-power utility function): Consider the parameter calibration from exam-
ple 4 with the only change being w(0.1) = 0.2. In the absence of a shock (ϵ = 0), the optimal
variable pay is β∗ = 1 and the optimal fixed pay is α∗ = 3.5. In the presence of a shock, the
optimal variable pay is β∗ = 1.17 and the optimal fixed pay is α∗ = 2.73. The optimal variable
pay in the absence of a shock is less than the variable pay in presence of a shock. We have that
the expected value is E[L∗] = 3.41 and the certainty equivalent of L∗ is 4. Hence, the agent
exhibits risk-seeking behavior at the optimal contract (α∗, β∗) = (2.73, 1.17) where the tradeoff
between risk and incentives is not observed.

Proof of Proposition B1:
Given the linear contract (α, β), the objective function of a EUT agent with cost function

C(e) = ψe2 is given by

EU(L) = pu(y+) + (1− p)u(y−)
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with u(x) =
1− exp(−rx)

r
, y+ = α + βθ

(

e+ 1−p
p
ϵ

)

− ψe2 and y− = α + βθ

(

e− ϵ

)

− ψe2

The first-order condition of the agent’s maximization problem is given by

(βθ − 2ψe)[pu′(y+) + (1− p)u′(y−)] = 0

Since pu′(y+) + (1 − p)u′(y−) ̸= 0, it turns out that the agent’s optimal effort function is
given by

e =
βθ

2ψ

Hence, the optimal effort function is an increasing function of the variable pay and does not
vary with respect to ϵ, the utility function or the fixed pay α.

The optimization problem of the principal is to maximize the expected value of θz − y by
accounting for the agent’s incentive compatibility constraint (IC) and participation constraint
(PC):



































max
α,β

θe− (α + βθe)

s.t. :

e = βθ

2ψ

pu

(

α + βθ

(

e+ 1−p
p
ϵ

)

− ψe2

)

+ (1− p)u
(

α + βθ(e− ϵ)− ψe2
)

= u(y0)

which is equivalent to



























max
α,β

θ2

2ψ

(

β − β2)− α

s.t. :

pu

(

α + β2θ2

4ψ
+ 1−p

p
βθϵ

)

+ (1− p)u
(

α + β2θ2

4ψ
− ϵ
)

= y0

The corresponding Lagrangian function is given by

L(α, β, µ) =
θ2

2ψ

(

β − β2)− α+ µ

[

pu

(

α+
β2θ2

4ψ
+

1− p

p
βθϵ

)

+ (1− p)u
(

α+
β2θ2

4ψ
− ϵ
)

− y0

]

Denote by

y′+ = θ
(1− p

p
ϵ+

βθ

2ψ

)

> 0

y′− = θ
(

− ϵ+
βθ

2ψ

)

> 0

Then, the first-order conditions are given by

∂L

∂β
=

θ2

2ψ

(

1− 2β) + µ

[

pu′(y+)y
′
+ + (1− p)u′(y−)y

′
− − y0

]

= 0 (42)

∂L

∂α
= −1 + µ

[

pu′(y+) + (1− p)u′(y−)

]

= 0 (43)
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∂L

∂µ
= pu(y+) + (1− p)u(y−)− y0 = 0 (44)

with y− = α + β2θ2

4ψ
− βθϵ and y+ = α + β2θ2

4ψ
+ 1−p

p
βθϵ.

Note that from (42) and (43), it turns out that the optimal variable pay β satisfies

β = 1 + (1− p)
2ψϵ

θ

u′(y+)− u′(y−)

pu′(y+) + (1− p)u′(y−)
≤ 1 (45)

This shows that the optimal variable pay in the absence of shock (ϵ = 0) is 1. Since
u′(y+) < u′(y−), it also follows that the optimal variable pay in the absence of shock is greater
than the optimal variable pay in the presence of shock (ϵ > 0). Let us now derive an even
stronger result according to which the optimal variable pay is a decreasing function of ϵ.

Totally differentiating the first-order conditions (42)-(44) with respect to β, α, µ and ϵ leads
to

Hess(α, β, µ)×













dβ

dϵ
dα

dϵ
dµ

dϵ













= −















∂2β

∂β∂ϵ
∂2β

∂α∂ϵ
∂2β

∂µ∂ϵ















(46)

with Hess(α, β, µ) being the Hessian matrix defined as follows

Hess(α, β, µ) =

















∂2L

∂β2

∂2L

∂α∂β

∂2L

∂µ∂β
∂2L

∂α∂β

∂2L

∂α2

∂2L

∂α∂µ
∂2L

∂µ∂β

∂2L

∂α∂µ

∂2L

∂µ2

















Assuming that there exists at least a local maximum so that the determinant of the Hessian
matrix is positive, it follows from (46) that

Sing

(

dβ

dϵ

)

= Sign(E) (47)

with

E =
∂2L

∂α∂µ

(

∂2L

∂β∂ϵ

∂2L

∂α∂µ
−

∂2L

∂α∂ϵ

∂2L

∂β∂µ

)

−
∂2L

∂µ∂ϵ

(

∂2L

∂α∂β

∂2L

∂α∂µ
−
∂2L

∂α2

∂2L

∂β∂µ

)

µ =
1

pu′(y+) + (1− p)u′(y−)
(48)

∂2L

∂β∂ϵ
= µθ(1− p)

[

u′(y+)− u′(y−) + β
(

u′′(y+)y
′
+ − u′′(y−)y

′
−

)]

∂2L

∂µ∂α
= pu′(y+) + (1− p)u′(y−) > 0

∂2L

∂α∂ϵ
= µβθ(1− p)

(

u′′(y+)− u′′(y−)
)

> 0
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∂2L

∂µ∂β
= py′+u

′(y+) + (1− p)y′−u
′(y−) > 0

∂2L

∂µ∂ϵ
= βθ(1− p)

(

u′(y+)− u′(y−)
)

< 0

∂2L

∂α∂β
= µ

[

py′+u
′′(y+) + (1− p)y′−u

′′(y−)
]

≤ 0

∂2L

∂α2
= µ

[

pu′′(y+) + (1− p)u′′(y−)
]

≤ 0

Using all the previous derivatives, we have

∂2L

∂β∂ϵ

∂2L

∂α∂µ
−
∂2L

∂α∂ϵ

∂2L

∂β∂µ
= θ(1−p)

(

u′(y+)−u
′(y−)

)

−µ
θ2βϵ

p
(1−p)u′(y+)u

′(y−)
(

(1−p)Aa(y+)+pAa(y−)
)

≤ 0

∂2L

∂α∂β

∂2L

∂α∂µ
−
∂2L

∂α2

∂2L

∂β∂µ
= µθϵ(1− p)u′(y+)u

′(y−)
(

Aa(y−)− Aa(y+)
)

≥ 0

E = θ(1− p)
[(

u′(y+)− u′(y−)
) 1

µ
− µβθϵu′(y+)u

′(y−)
(

u′(y+)Aa(y−) +
1− p

p
u′(y−)Aa(y+)

)]

Since the utility function is concave, we have u′(y+) < u′(y−), Aa(y−) > 0 and Aa(y+) > 0
so that E < 0. It turns out that

dβ

dϵ
< 0

To illustrate this, consider again the expo-power utility function (Saha, 1993). The alterna-

tive level of utility is given by y0 =
1− exp(−ryγ0 )

r
with y0 the alternative (outside) outcome.

Hence, the first-order conditions are given by

∂L

∂β
=
θ2

2ψ
(1−2β)+µγθ

[

p

(

1− p

p
ϵ+

βθ

2ψ

)

exp

(

−r
(

α+βθ
1− p

p
ϵ+

β2θ2

4ψ

)γ
)

(

α+βθ
1− p

p
ϵ+

β2θ2

4ψ

)γ−1
+

(1− p)

(

− ϵ+
βθ

2ψ

)

exp

(

− r
(

α− βθϵ+
β2θ2

4ψ

)γ
)

(

α− βθϵ+
β2θ2

4ψ

)γ−1
]

= 0

∂L

∂α
= −1 + µγ

[

pexp

(

− r
(

α+ βθ
1− p

p
ϵ+

β2θ2

4ψ

)γ
)

(

α+ βθ
1− p

p
ϵ+

β2θ2

4ψ

)γ−1
+

(1− p)exp

(

− r
(

α− βθϵ+
β2θ2

4ψ

)γ
)

(

α− βθϵ+
β2θ2

4ψ

)γ−1
]

= 0

∂L

∂µ
= p

1− exp

(

− r
(

α+ βθ 1−p
p
ϵ+ β2θ2

4ψ

)γ
)

r
+ (1− p)

1− exp

(

− r
(

α− βθϵ+ β2θ2

4ψ

)γ
)

r

−
1− exp(−ryγ0 )

r
= 0
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We set (r, γ) = (0.029, 0.731) as in by Holt and Laury (2002) and (ψ, θ, y0) = (0.5, 1, 4). In
the absence of a shock (ϵ = 0), the optimal variable pay is β∗ = 1 and the optimal fixed pay
is α∗ = 3.5. In the presence of a shock, we set (ϵ, p) = (1, 0.5). The optimal variable pay is
β∗ = 0.92 and the optimal fixed pay is α∗ = 3.61. The optimal variable pay in the absence of
shock is thus greater than the variable pay in the presence of a shock.

QED.

Proof of Proposition B2

Given the linear contract (α, β), the objective function of an expected utility agent with
cost function C(e) = ψe2 is given by

RDU(L) = w(p)u(y+) + (1− w(p))u(y−)

with u(x) =
1− exp(−rx)

r
, y+ = α + βθ

(

e+ 1−p
p
ϵ

)

− ψe2 and y− = α + βθ

(

e− ϵ

)

− ψe2

The first-order condition of the agent’s maximization problem is given by

(βθ − 2ψe)[w(p)u′(y+) + (1− w(p))u′(y−)] = 0

Since w(p)u′(y+) + (1 − w(p))u′(y−) ̸= 0, it turns out that the optimal effort function is
given by

e =
βθ

2ψ

Hence, the optimal effort function is an increasing function of the variable pay and does not
vary with respect to ϵ, the utility curvature, the fixed pay α or the probability risk attitude
captured by w(p).

Point i)

The optimization problem of the principal is to maximize the expected value of θz − y by
accounting for the agent’s incentive compatibility constraint (IC) and participation constraint
(PC):



































max
α,β

θe− (α + βθe)

s.t. :

e = βθ

2ψ

w(p)u

(

α + βθ

(

e+ 1−p
p
ϵ

)

− ψe2

)

+ (1− w(p))u
(

α + βθ(e− ϵ)− ψe2
)

= y0

which is equivalent to



























max
α,β

θ2

2ψ

(

β − β2)− α

s.t. :

w(p)u

(

α + β2θ2

4ψ
+ 1−p

p
βθϵ

)

+ (1− w(p))u
(

α + β2θ2

4ψ
− ϵ
)

= y0

The corresponding Lagrangian function is given by
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L(α, β, µ) =
θ2

2ψ

(

β−β2)−α+µ

[

w(p)u

(

α+
β2θ2

4ψ
+
1− p

p
βθϵ

)

+(1−w(p))u
(

α+
β2θ2

4ψ
−ϵ
)

−y0

]

Denote by

y′+ = θ
(1− p

p
ϵ+

βθ

2ψ

)

> 0

y′− = θ
(

− ϵ+
βθ

2ψ

)

> 0

Then, the first-order conditions are given by

∂L

∂β
=

θ2

2ψ

(

1− 2β) + µ

[

w(p)u′(y+)y
′
+ + (1− w(p))u′(y−)y

′
−

]

= 0 (49)

∂L

∂α
= −1 + µ

[

w(p)u′(y+) + (1− w(p))u′(y−)

]

= 0 (50)

∂L

∂µ
= w(p)u(y+) + (1− w(p))u(y−)− y0 = 0 (51)

with y− = α + β2θ2

4ψ
− βθϵ and y+ = α + β2θ2

4ψ
+ 1−p

p
βθϵ.

Denote by δ := w(p). Then, totally differentiating the first-order conditions (49)-(51) with
respect to β, α, µ and δ leads to

Hess(α, β, µ)×













dβ

dδ
dα

dδ
dµ

dδ













= −















∂2β

∂β∂δ
∂2β

∂α∂δ
∂2β

∂µ∂δ















(52)

with Hess(α, β, µ) being the Hessian matrix defined as follows

Hess(α, β, µ) =

















∂2L

∂β2

∂2L

∂α∂β

∂2L

∂µ∂β
∂2L

∂α∂β

∂2L

∂α2

∂2L

∂α∂µ
∂2L

∂µ∂β

∂2L

∂α∂µ

∂2L

∂µ2

















Assuming that there exists at least a local maximum so that the determinant of the Hessian
matrix is positive, it follows from (52) that

Sing

(

dβ

dδ

)

= Sign(∆) (53)

with

∆ =
∂2L

∂α∂µ

(

∂2L

∂β∂δ

∂2L

∂α∂µ
−

∂2L

∂α∂δ

∂2L

∂β∂µ

)

−
∂2L

∂µ∂δ

(

∂2L

∂α∂β

∂2L

∂α∂µ
−
∂2L

∂α2

∂2L

∂β∂µ

)
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µ =
1

pu′(y+) + (1− p)u′(y−)
(54)

∂2L

∂β∂δ
= µ

[

u′(y+)y
′
+ − u′(y−)y

′
−)
]

∂2L

∂µ∂α
= w(p)u′(y+) + (1− w(p))u′(y−) > 0

∂2L

∂α∂δ
= µ

(

u′(y+)− u′(y−)
)

> 0

∂2L

∂µ∂β
= w(p)y′+u

′(y+) + (1− w(p))y′−u
′(y−) > 0

∂2L

∂µ∂δ
= u(y+)− u(y−) > 0

∂2L

∂α∂β
= µ

[

w(p)y′+u
′′(y+) + (1− w(p))y′−u

′′(y−)
]

≤ 0

∂2L

∂α2
= µ

[

w(p)u′′(y+) + (1− w(p))u′′(y−)
]

≤ 0

Using all the previous derivatives, we have

∂2L

∂β∂δ

∂2L

∂α∂µ
−

∂2L

∂α∂δ

∂2L

∂β∂µ
= µ

θϵ

p
u′(y+)u

′(y−) > 0

∂2L

∂α∂β

∂2L

∂α∂µ
−
∂2L

∂α2

∂2L

∂β∂µ
= µ

θϵ

p
u′(y+)u

′(y−)w(p)(1− w(p))
(

Aa(y−)− Aa(y+)
)

≥ 0

Hence

∆ = µ
θϵ

p
u′(y+)u

′(y−)

[

w(p)u′(y+)+(1−w(p))u′(y−)−w(p)(1−w(p))
(

u(y+)−u(y−)
)(

Aa(y−)−Aa(y+)
)]

Clearly ∆ > 0 (i.e.,
dβ

dδ
> 0 ) under CARA utility assumption, indicating that the approx-

imation errors in Arrow-Pratt risk premium does not alter the results established in previous
propositions. For utility function such that Aa(y−) − Aa(y+) −→ 0, we have ∆ > 0 (i.e.,
dβ

dδ
> 0).

Point ii)

From (49) and (50), it turns out that the optimal variable pay β∗ satisfies the following
equation

β = 1 +
2ψϵ

θ

w(p)
1− p

p
u′(y+)− (1− w(p))u′(y−)

w(p)u′(y+) + (1− w(p))u′(y−)
≤ 1 (55)
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Thus, the optimal variable pay in the absence of shock (ϵ = 0) is 1. Since u′(y+) < u′(y−),
it also follows under the assumption of probability risk-aversion/neutrality (i.e., w(p) ≤ p) that
the optimal variable pay in the absence of shock is greater than the optimal variable pay in the
presence of shock (ϵ > 0).

Now, we show a stronger result according to which the optimal variable pay is indeed a
decreasing function of ϵ under the assumption of probability risk-aversion/neutrality.

Totally differentiating the first-order conditions (49)-(51) with respect to β, α, µ and ϵ leads
to

Hess(α, β, µ)×













dβ

dϵ
dα

dϵ
dµ

dϵ













= −















∂2β

∂β∂ϵ
∂2β

∂α∂ϵ
∂2β

∂µ∂ϵ















(56)

with Hess(α, β, µ) being the Hessian matrix defined as follows

Hess(α, β, µ) =

















∂2L

∂β2

∂2L

∂α∂β

∂2L

∂µ∂β
∂2L

∂α∂β

∂2L

∂α2

∂2L

∂α∂µ
∂2L

∂µ∂β

∂2L

∂α∂µ

∂2L

∂µ2

















Assuming there exists at least a local maximum so that the determinant of the Hessian
matrix is positive, it follows from (56) that

Sing

(

dβ

dϵ

)

= Sign(R) (57)

with

E =
∂2L

∂α∂µ

(

∂2L

∂β∂ϵ

∂2L

∂α∂µ
−

∂2L

∂α∂ϵ

∂2L

∂β∂µ

)

−
∂2L

∂µ∂ϵ

(

∂2L

∂α∂β

∂2L

∂α∂µ
−
∂2L

∂α2

∂2L

∂β∂µ

)

µ =
1

pu′(y+) + (1− p)u′(y−)
(58)

∂2L

∂β∂ϵ
= µθ

[

w(p)
1− p

p
u′(y+)−(1−w(p))u′(y−)+β

(

w(p)
1− p

p
u′′(y+)y

′
+−(1−w(p))u′′(y−)y

′
−

)]

∂2L

∂µ∂α
= w(p)u′(y+) + (1− w(p))u′(y−) > 0

∂2L

∂α∂ϵ
= µβθ

(

w(p)
1− p

p
u′′(y+)− (1− w(p))u′′(y−)

)

∂2L

∂µ∂β
= w(p)y′+u

′(y+) + (1− w(p))y′−u
′(y−) > 0

∂2L

∂µ∂ϵ
= βθ

(

w(p)
1− p

p
u′(y+)− (1− w(p))u′(y−)

)

< 0
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∂2L

∂α∂β
= µ

[

w(p)y′+u
′′(y+) + (1− w(p))y′−u

′′(y−)
]

≤ 0

∂2L

∂α2
= µ

[

w(p)u′′(y+) + (1− w(p))u′′(y−)
]

≤ 0

Using all the previous derivatives, we have

∂2L

∂β∂ϵ

∂2L

∂α∂µ
−
∂2L

∂α∂ϵ

∂2L

∂β∂µ
= θ

(

w(p)
1− p

p
u′(y+)−(1−w(p))u′(y−)

)

−µ
θ2βϵ

p
w(p)(1−w(p))u′(y+)u′(y−)

(1− p

p
Aa(y+)+Aa(y−)

)

≤ 0

∂2L

∂α∂β

∂2L

∂α∂µ
−
∂2L

∂α2

∂2L

∂β∂µ
= µ

θϵ

p
w(p)(1− w(p))u′(y+)u

′(y−)
(

Aa(y−)− Aa(y+)
)

≥ 0

Hence

R = R1 −R2

with

R1 = θ
(

w(p)u′(y+) + (1− w(p))u′(y−)
)(

w(p)
1− p

p
u′(y+)− (1− w(p))u′(y−)

)

R2 =

βθ2ϵu′(y+)u
′(y−)

w(p)

p
(1− w(p))

(

w(p)

p
u′(y+)Aa(y−) +

1− w(p)

p
u′(y−)Aa(y+)

)

w(p)u′(y+) + (1− w(p))u′(y−)

E = θ(1− p)
[(

u′(y+)− u′(y−)
) 1

µ
− µβθϵu′(y+)u

′(y−)
(

u′(y+)Aa(y−) +
1− p

p
u′(y−)Aa(y+)

)]

Since the utility function is increasing and concave, we have 0 < u′(y+) < u′(y−), Aa(y−) > 0
and Aa(y+) > 0 so that R2 > 0.

Also note that the agent’s probability risk-aversion/risk-neutrality (i.e., w(p) ≤ p) implies
R1 < 0. It follows that in the presence of probability risk-aversion/risk-neutrality we have
R < 0 and hence

dβ

dϵ
< 0

Point iii)
Recall that the equation (55) satisfies by the optimal variable pay

β = 1 +
2ψϵ

θ

w(p)
1− p

p
u′(y+)− (1− w(p))u′(y−)

w(p)u′(y+) + (1− w(p))u′(y−)
≤ 1 (59)

It follows directly that

β > 1 ⇐⇒

w(p)
p

1−w(p)
1−p

>
u′(y−)

u′(y+)
> 1
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Point iv)

From (59), it follows directly

β > 1 ⇐⇒ w(p)
1− p

p
u′
(

α + βθ
1− p

p
ϵ+

β2θ2

4ψ

)

− (1− w(p))u′
(

α +
β2θ2

4ψ
− βθϵ

)

Denote by

H(ϵ) = w(p)
1− p

p
u′
(

α + βθ
1− p

p
ϵ+

β2θ2

4ψ

)

− (1− w(p))u′
(

α +
β2θ2

4ψ
− βθϵ

)

+ o(ϵ)

Then, the first-order Taylor approximation of H(ϵ) around ϵ = 0 gives

H(ϵ)

u′
(

α +
β2θ2

4ψ

)

=
w(p)

p
− 1−

(

1 +
w(p)

p

1− 2p

p

)

βθϵAa

(

α +
β2θ2

4ψ

)

(60)

with o(ϵ) the approximation error which is such that lim
ϵ−→0

=
o(ϵ)

ϵ
= 0. It turns out that

H(ϵ) > 0 if the following condition holds

Aa

(

α +
β2θ2

4ψ

)

<
1

βθϵ

w(p)

p
− 1

1 +
w(p)

p

1− 2p

p

:= Atoa (β, ϵ) (61)

QED.

Proof of Proposition B3:

From Lemma 1, the absolute risk-aversion index ANa

(

α∗+
β∗2θ2

4ψ

)

that makes an agent with

probability risk-seeking behavior to exhibit risk-neutrality (i.e., risk premium equals 0) for the

lottery L =

(

α∗ + β∗θ

(

e∗ + 1−p
p
ϵ

)

− ψe∗2, α∗ + β∗θ

(

e∗ − ϵ

)

− ψe∗2; p, 1− p

)

associated with

the optimal linear contract (α∗, β∗) and optimal effort e∗ is given by

ANa

(

α∗ +
β∗2θ2

4ψ

)

:=
2

θϵβ∗

δ

p
− 1

1 +
δ

p

1− 2p

p

(62)

with δ = w(p)
From Proposition B2, the threshold Atoa (β

∗, ϵ) of the absolute risk-aversion index of an agent
with probability risk-seeking behavior that leads the principal to propose an optimal variable
pay that is greater in presence of the shock than in its absence is given by

Atoa (β
∗, ϵ) ∼=

1

βθϵ

w(p)

p
− 1

1 +
w(p)

p

1− 2p

p

(63)
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Since ANa

(

α∗ +
β∗2θ2

4ψ

)

≃ 2Atoa

(

β∗, ϵ
)

, then ANa

(

α∗ +
β∗2θ2

4ψ

)

> 2Atoa

(

β∗, ϵ
)

As an example, consider the expo-power utility function (Saha, 1993). The alternative level

of utility is given by y0 =
1− exp(−ryγ0 )

r
with y0 being the alternative (outside) outcome.

Hence, the first-order conditions are given by

∂L

∂β
=
θ2

2ψ
(1−2β)+µγθ

[

w(p)

(

1− p

p
ϵ+

βθ

2ψ

)

exp

(

−r
(

α+βθ
1− p

p
ϵ+
β2θ2

4ψ

)γ
)

(

α+βθ
1− p

p
ϵ+
β2θ2

4ψ

)γ−1
+

(1− w(p))

(

− ϵ+
βθ

2ψ

)

exp

(

− r
(

α− βθϵ+
β2θ2

4ψ

)γ
)

(

α− βθϵ+
β2θ2

4ψ

)γ−1
]

= 0

∂L

∂α
= −1 + µγ

[

w(p)exp

(

− r
(

α+ βθ
1− p

p
ϵ+

β2θ2

4ψ

)γ
)

(

α+ βθ
1− p

p
ϵ+

β2θ2

4ψ

)γ−1
+

(1− w(p))exp

(

− r
(

α− βθϵ+
β2θ2

4ψ

)γ
)

(

α− βθϵ+
β2θ2

4ψ

)γ−1
]

= 0

∂L

∂µ
= w(p)

1− exp

(

− r
(

α+ βθ 1−p
p
ϵ+ β2θ2

4ψ

)γ
)

r
+ (1− w(p))

1− exp

(

− r
(

α− βθϵ+ β2θ2

4ψ

)γ
)

r

−
1− exp(−ryγ0 )

r
= 0

• We set (r, γ) = (0.029, 0.731) as found by Holt and Laury (2002) and (ψ, θ, y0) =
(0.5, 1, 4). In the absence of shock (ϵ = 0), the optimal variable pay is β∗ = 1 and
the optimal fixed pay is α∗ = 3.5. In the presence of a shock (ϵ, p, w(p)) = (1, 0.1, 0.15),
the optimal variable pay is β∗ = 0.95 and the optimal fixed pay is α∗ = 3.37. The optimal
variable pay in the absence of a shock is greater than the variable pay in presence of a
shock. The expected value is E[L] = 3.83 and the certainty equivalent of L is 4. Hence,
the agent exhibits risk-seeking at the optimal contract (α∗, β∗) = (3.37, 0.95) where the
tradeoff between risk and incentive is observed.

• Consider the calibration from the previous example with one change: w(0.1) = 0.2. In
the absence of a shock (i.e., ϵ = 0), the optimal variable pay is β∗ = 1 and the optimal
fixed pay is α∗ = 3.5. In the presence of a shock (ϵ, p) = (1, 0.1), the optimal variable
pay is β∗ = 1.17 and the optimal fixed pay is α∗ = 2.73. The optimal variable pay in
the absence of shock is less than the variable pay in the presence of shock. The expected
value is E[L] = 3.41 and the certainty equivalent of L is 4. Hence, the agent exhibits
risk-seeking at the optimal contract (α∗, β∗) = (2.73, 1.17) where the tradeoff between
risk and incentive is not observed.

QED.
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C- Extension to continuous random shocks

In Section 2, we focus on binary shocks. Herein, we extend this framework to the case of contin-
uous random shocks. We denote by f(.)(F (.)) the probability density (cumulative distribution)
function of a continuous random shock ϵ̃ such that E(ϵ̃) = 0 and V (ϵ̃). We further assume that
the distribution is symmetric around 0, that is f(ϵ) = f(−ϵ) for all ϵ > 0.
Proposition C1 (Consistency of results under RDU):19

i) Assume that the agent exhibits probability risk-aversion or probability risk-neutrality (i.e.,
w′(.) ≥ 0). Hence, the optimal variable pay is greater in the absence of shock than in its
presence.
ii) Assume that the agent exhibits probability risk-seeking (i.e., w′(.) < 0) or inverse-s-shaped
probability weighting (i.e.,∃ a ∈ (0, 1) such that w′′(p) < 0 for p ∈ (0, a) and w′′(p) > 0 for
p ∈ (a, 1) ). Hence the optimal performance can be greater in the presence of shock than in its
absence.

Proof of Proposition C1:

Given the linear contract (α, β), the objective function of an expected utility agent with
cost function C(e) = ψe2 is given by

RDU(L) =

∫ +∞

−∞

u
(

α + βθ(e+ ϵ)− ψe2
)

d
[

1− w
(

1− F (ϵ)
)]

(64)

Noting that d
[

1 − w
(

1 − F (ϵ)
)]

= w′
(

1 − F (ϵ)
)

f(ϵ)dϵ, the derivative of (64) with respect
to e is given by

(βθ − 2ψe)

∫ +∞

−∞

u′
(

α + βθ(e+ ϵ)− ψe2
)

w′
(

1− F (ϵ)
)

f(ϵ)dϵ = 0

Since both u(.) and w(.) are strictly increasing functions, it turns out that the optimal effort
function of the agent is given by

e =
βθ

2ψ

Hence, the optimal effort function is an increasing function of the variable pay and does not
vary with respect to ϵ, the utility curvature r, the fixed pay α or the probability risk attitude
captured by w(p).

Point i)

The principal’s optimization problem is to maximize the expected value of θz − y by ac-
counting for the agent’s incentive compatibility constraint (IC) and participation constraint
(PC):































max
α,β

θe− (α + βθe)

s.t. :

e = βθ

2ψ
∫ +∞

−∞

u
(

α + βθ(e+ ϵ)− ψe2
)

w′
(

1− F (ϵ)
)

f(ϵ)dϵ = y0

19We focus here on symmetric distributions for which MVS boils down to mean-variance preference. The
mean-variance preference corresponds to the RDU with quadratic utility function and probabilistic risk-
neutrality (i.e., linear weighting function). In this context, the tradeoff between risk and incentive holds.
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which is equivalent to























max
α,β

θ2

2ψ

(

β − β2)− α

s.t. :
∫ +∞

−∞

u
(

α +
β2θ2

4ψ
+ βθϵ

)

w′
(

1− F (ϵ)
)

f(ϵ)dϵ = y0

The corresponding Lagrangian function is given by

L(α, β, µ) =
θ2

2ψ

(

β − β2
)

− α + µ

[

∫ +∞

−∞

u
(

α +
β2θ2

4ψ
+ βθϵ

)

w′
(

1− F (ϵ)
)

f(ϵ)dϵ− y0

]

The first-order conditions are given by

∂L

∂β
=

θ2

2ψ

(

1− 2β
)

+ µθ

∫ +∞

−∞

(βθ

2ψ
+ ϵ
)

u′
(

α +
β2θ2

4ψ
+ βθϵ

)

w′
(

1− F (ϵ)
)

f(ϵ)dϵ = 0 (65)

∂L

∂α
= −1 + µ

∫ +∞

−∞

u′
(

α +
β2θ2

4ψ
+ βθϵ

)

w′
(

1− F (ϵ)
)

f(ϵ)dϵ = 0 (66)

∂L

∂µ
=

∫ +∞

−∞

u
(

α +
β2θ2

4ψ
+ βθϵ

)

w′
(

1− F (ϵ)
)

f(ϵ)dϵ− y0 = 0 (67)

From (65) and (66), it follows that the optimal variable pay β∗ satisfies the following equation

β = 1 +
2ψ

θ

∫ +∞

−∞

ϵu
(

α +
β2θ2

4ψ
+ βθϵ

)

w′
(

1− F (ϵ)
)

f(ϵ)dϵ

∫ +∞

−∞

u
(

α +
β2θ2

4ψ
+ βθϵ

)

w′
(

1− F (ϵ)
)

f(ϵ)dϵ

(68)

It follows directly from (68) that if w′(.) ≥ 0, then
∫ +∞

−∞
ϵu
(

α+β2θ2

4ψ
+βθϵ

)

w′
(

1−F (ϵ)
)

f(ϵ)dϵ <

0 so that β < 1.

Point ii) From (68), it follows directly

β > 1 ⇐⇒ G(α, β) :=

∫ +∞

−∞

ϵu
(

α +
β2θ2

4ψ
+ βθϵ

)

w′
(

1− F (ϵ)
)

f(ϵ)dϵ > 0 (69)

Example:

Consider that the relationship between output and effort is affected by a shock that follows
a logistic distribution with mean 0 and variance π2

3
. The probability density function and

cumulative distribution functions are given by

f(ϵ) =
exp(−ϵ)

(1 + exp(−ϵ))2
and F (ϵ)

1

1 + exp(−ϵ)

Assume that the weighting function is the following linear combination of logarithmic and
quadratic functions
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w(p) = a
ln(δp+ 1)

ln(1 + δ)
+ (1− a− b)p2 + bp

with δ, a and b being parameters of the weighting function. The derivative of w(p) is given
by

w′(p) = a
δa

(δp+ 1)ln(1 + δ)
+ 2(1− a− b)p+ b

We set (δ, a, b) = (19, 1.25,−2). Figure 8 plots the density and probability weighting func-
tions. Note that (i) the weighting function is differentiable on [0, 1], (ii) the derivative function
w′(p) is U-shaped and (iii) the derivatives of small probabilities are greater than the derivatives
of high probabilities (see Figure 9).

Furthermore, assume a quadratic utility function u(x) = x−rx2 that is concave (i.e., r > 0).

• Case 1 (presence of tradeoff with risk-seeking agent): we set (r, ψ, θ, y0) =

(0.02, 0.5, 0.5, 4), with y0 being the alternative (outside) outcome. Let E = α +
βθ

4ψ
,

S1 =

∫ +∞

−∞

ϵw′(1 − F (ϵ))f(ϵ)dϵ and S2 =

∫ +∞

−∞

ϵ2w′(1 − F (ϵ))f(ϵ)dϵ, then the optimal

contract is given by the following system of two equations

∂L

∂µ
= E(1− rE) + βθ(1− 2rE)S1 − rβ2θ2S2 − y0 + ry20 = 0

β = 1 +
2ψ

θ

(1− 2rE)S1 − 2rβθS2

1− 2rE − 2rβθS1

The optimal variable pay is β∗ = 0.93 and the optimal fixed pay is α∗ = 3.87. Recall
that in the absence of a shock, the optimal variable pay is β∗ = 1 and the optimal fixed
pay is α∗ = 3.5. Hence, the optimal variable pay in the absence of a shock is greater
than the variable pay in presence of the shock. The expected value is E[L] = 3.97 and
the certainty equivalent of L is 4. Hence, the agent exhibits risk-seeking at the optimal
contract (α∗, β∗) = (3.87, 0.93) where the tradeoff between risk and incentive is observed.

• Case 2 (absence of tradeoff with risk-seeking agent): Consider the calibration of
parameters as before with the only change that r = 0.01. The optimal variable pay is
β∗ = 1.08 and the optimal fixed pay is α∗ = 3.81. The optimal variable pay in the absence
of shock is less than the variable pay in the presence of shock. We have the expected
value E[L] = 3.95 and the certainty equivalent of L is 4. Hence, the agent exhibits risk-
seeking at the optimal contract (α∗, β∗) = (3.95, 1.08) where the tradeoff between risk
and incentive is not observed.

QED.
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Figure 8: Density function and probability weighting function

Figure 9: Derivative of probability weighting function

D- Proofs of propositions in the BB model

Proof of Proposition 1
The minimum fixed pay accepted by an agent to work increases with the shock ϵ. The expected
utility associated with the contract is given by

EU(L) = pu

(

α + βθ

(

e+
1− p

p
ϵ

)

− ψe2

)

+ (1− p)u

(

α + βθ

(

e− ϵ

)

− ψe2

)

For any given contract (α, β), the agent’s optimal level of effort is given by

e =
βθ

2ψ

Note that this level of effort does not depend on α. The agent accepts to provide the level
of effort if
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pu

(

α +
β2θ2

4ψ
+

1− p

p
βθϵ

)

+ (1− p)u

(

α +
β2θ2

4ψ
− βθϵ

)

≥ u(y0)

Note that the left-hand side of the above inequality is strictly increasing in α. Hence, there
exists a minimum level of fixed pay αm such that the participation constraint is binding, that
is

F (αm, ϵ) := pu

(

e

)

+ (1− p)u

(

αm +
β2θ2

4ψ
− βθϵ

)

− u(y0) = 0 (70)

Denote by y∗− = α + β2θ2

4ψ
− βθϵ and y∗+ = α + β2θ2

4ψ
+ 1−p

p
βθϵ, then y∗− < y∗+.

Point i) The minimum fixed pay increases with the utility (outcome)-risk aversion

Assuming CARA utility function, equation (70) becomes

F (αm, ϵ) := pexp

(

−r
(

αm+
β2θ2

4ψ
+
1− p

p
βθϵ
)

)

+(1−p)exp

(

−r
(

αm+
β2θ2

4ψ
−βθϵ

)

)

−exp(−ry0) = 0

sign
(dαm
dr

)

= sign
(

− py∗+exp(−ry
∗
+)− (1− p)y∗−exp(−ry

∗
−) + y0exp(−ry0)

)

Denote by v(x) = xexp(−rx) a utility function over [0,∞) with rx < 1 (Assumption A3”).
The certainty equivalent y∗0 of the lottery (y∗+, y

∗
−; p, 1− p) according to the utility function v(.)

is implicitly defined by

y∗0exp(−ry
∗
0) = py∗+exp(−ry

∗
+) + (1− p)y∗−exp(−ry

∗
−)

Take the absolute risk aversion index of v(.),

−
v′′(x)

v′(x)
= r

2− rx

1− rx
> r

Hence the utility function v(.) is associated to higher risk-aversion index than u(.). By the
Pratt (1964) approximation, we have y∗0 < y0. Hence,

y∗0exp(−ry
∗
0) = py∗+exp(−ry

∗
+) + (1− p)y∗−exp(−ry

∗
−) < y0exp(−ry0)

This yields

sign
(dαm
dr

)

= sign
(

− py∗+exp(−ry
∗
+)− (1− p)y∗−exp(−ry

∗
−) + y0exp(−ry0)

)

> 0

Point ii) The implicit function theorem yields

dαm
dϵ

= βθ(1− p)
u′(y∗−)− u′(y∗+)

pu′(y∗+) + (1− p)u′(y∗−)
> 0

Under Assumption A3’, the minimum α increases with the shock size. Note that if the
utility function is instead convex and the second-order condition resulting from the second

derivative of EU(L) with respect to the effort is negative, then
dαm
dϵ

< 0.

QED.
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Proof of Proposition 2

The rank dependent utility associated with the contract is given by

RDU(L) = w(p)u

(

α + βθ

(

e+
1− p

p
ϵ

)

− ψe2

)

+ (1− w(p))u

(

α + βθ

(

e− ϵ

)

− ψe2

)

For any given contract (α, β), agent’s optimal level of effort under the accepted contract is

e =
βθ

2ψ

Note that this level of effort does not depend on α. The agent accepts to provide a given
level of effort if

w(p)u

(

α +
β2θ2

4ψ
+

1− p

p
βθϵ

)

+ (1− w(p))u

(

α +
β2θ2

4ψ
− βθϵ

)

≥ u(y0)

Note that the left-hand side of the above inequality is strictly increasing in α. Hence,
there exists a minimum level of fixed pay αm such that the previous participation constraint is
binding, that is

F (αm, ϵ) := w(p)u

(

α+
β2θ2

4ψ
+

1− p

p
βθϵ

)

+ (1−w(p))u

(

α+
β2θ2

4ψ
− βθϵ

)

− u(y0) = 0 (71)

Point i) The minimum fixed pay increases with the utility risk-aversion and probability
risk-aversion

Assuming CARA utility function, the equation (71) becomes

F (αm, ϵ) :=− exp(−ry0) + w(p)exp

(

− r
(

αm +
β2θ2

4ψ
+

1− p

p
βθϵ
)

)

+ (1− w(p))exp

(

− r
(

αm +
β2θ2

4ψ
− βθϵ

)

)

= 0

(72)

sign
(dαm
dr

)

= sign
(

− w(p)y∗+exp(−ry
∗
+)− (1− w(p))y∗−exp(−ry

∗
−) + y0exp(−ry0)

)

Denote by v(x) = xexp(−rx) a utility function over [0,∞) with rx < 1. The certainty
equivalent y∗0 of the lottery (y∗+, y

∗
−; p, 1 − p) according to the utility function v(.) is implicitly

defined by

y∗0exp(−ry
∗
0) = w(p)y∗+exp(−ry

∗
+) + (1− w(p))y∗−exp(−ry

∗
−)

Take the absolute risk-aversion index of v(.),

−
v′′(x)

v′(x)
= r

2− rx

1− rx
> r

Hence the utility function v(.) is associated with a higher risk-aversion index than u(.).
By Lemma 1 (Appendix A) that provides the equivalent of Pratt (1964) approximation in our
setting, we have y∗0 < y0. Hence,
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y∗0exp(−ry
∗
0) = w(p)y∗+exp(−ry

∗
+) + (1− w(p))y∗−exp(−ry

∗
−) < y0exp(−ry0)

This yields

sign
(dαm
dr

)

= sign
(

− w(p)y∗+exp(−ry
∗
+)− (1− w(p))y∗−exp(−ry

∗
−) + y0exp(−ry0)

)

> 0

Also, for a given probability p = p with δ := w(p), the minimum fixed pay decreases with
degree of probability overweighting.

The implicit function theorem applied to (71) directly leads to

dαm
dδ

= −
u(y∗+)− u(y∗−)

w(p)u′(y∗+) + (1− w(p))u′(y∗−)
< 0

Hence, fixed pay increases with probability risk-aversion.

Point ii) Implicit function theorem leads to

dαm
dϵ

= βθ
(1− w(p))u′(y∗−)−

w(p)
p
u′(y∗+)

w(p)u′(y∗+) + (1− w(p))u′(y∗−)

It follows that for w(p) ≤ p (underweighting), we have directly dαm

dϵ
> 0.

Similarly, we find that dαm

dβ
> 0 under the assumption that e =

βθ

2ψ
> ϵ.

Point iii) In contrast, assuming w(p) > p (overweighting), we have

dαm
dϵ

< 0 ⇐⇒

w(p)
p

1−w(p)
1−p

>
u′
(

αm + β2θ2

4ψ
− βθϵ

)

u′
(

αm + β2θ2

4ψ
+ 1−p

p
βθϵ
)

For CARA utility function this implies that

dαm
dϵ

< 0 ⇐⇒ r < rto(β, ϵ)

with the threshold defined as

rto(β, ϵ) :=
p

βθϵ

[

ln
(w(p)

p

)

− ln
(1− w(p)

1− p

)

]

> 0

Hence, under rank dependent utility theory, the minimum accepted α decreases with the
shock size if we have substantial overweighting and moderate utility curvature.

Point iv)

The certainty equivalent ce = y0 of a lottery L =
(

αm+βθ
(

e+ 1−p
p
ϵ
)

, αm+βθ(e−ϵ); p, 1−p
)

with e = βθ

2ψ
is given by

u(ce) = δ

1− exp

(

− r
(

αm + β2θ2

4ψ
+ 1−p

p
βθϵ
)

)

r
+ (1− δ)

1− exp

(

− r
(

αm + β2θ2

4ψ
− βθϵ

)

)

r

The utility of the expected value E[L] = αm + βθe− ψe2 = αm + β2θ2

4ψ
is given by
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u
(

E[L]
)

=

1− exp

(

− r
(

αm + β2θ2

4ψ

)

)

r

Define by g(.) the following differential function over [0,∞)

g(r) = δexp
[

− rβθ
1− p

p
ϵ
]

+ (1− δ)exp[rβθϵ]

The absolute risk-aversion rN(β) for which the equality u
(

ce
)

= u
(

E[L]
)

holds for a risk-
neutral agent is implicitly defined by

g(rN(β, ϵ)) = 1

Note that g(.) has the following three characteristics: (i) g(.) is convex on [0,∞); (ii)
g(0) = 1 and lim

r−→+∞
g(r) = +∞; (iii) g(.) attains its minimum exactly at the thresholds of the

tradeoff rto(β, ϵ)

rto(β, ϵ) =
p

βθϵ

[

ln
(w(p)

p

)

− ln
(1− w(p)

1− p

)

]

These three characteristics yield two solutions for rN(β, ϵ) : r1 = 0 < rto(β, ϵ) and r2 >
rto(β, ϵ).

It is clear that we should rule out the case r1 = 0 < rto(β, ϵ). Indeed, for r1 = 0 we have a
linear utility function. Then, to have risk-neutral agent under linear utility function, we should
have also δ = w(p) = p. This contradicts our initial assumption δ > p.

Ruling out the case r1 = 0, it follows that the value of rN(β, ϵ) that allows the equality
u(ce) = u(E[L]) for a risk-neutral agent (that compensates probability risk-seeking with utility
risk aversion) is such that rN(β, ϵ) > rto(β, ϵ).

Finally, note that this result holds for general utility function (see our Proposition B3).

Point v) A simple derivative of the expression of rto(β, ϵ) shows that this threshold decreases
with β and ϵ.

The CARA coefficient for risk-neutrality is implicitly determined by

F (rN , β) := δexp
[

− rβθ
1− p

p
ϵ
]

+ (1− δ)exp[rβθϵ]− 1 = 0

The implicit function theorem yields

rN
β

drN(β, ϵ)

dβ
= −1 < 0

Hence, the agent becomes risk-seeking for a sufficiently small value of variable pay β. In
particular, if the agent is risk-neutral or risk-seeking for a contract involving β1; then the agent
is risk-seeking for contract involving β0 < β1.

Similarly,

rN
ϵ

drN(β, ϵ)

dϵ
= −1 < 0

QED.

Proof of Proposition 3:
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The mean-variance-skewness preference associated with the contract is given by

MV S(L) = α + βθe− ψe2 + av
1− p

p
β2θ2ϵ2 + as

1− p

p

1− 2p

p
β3θ3ϵ3

For any accepted contract (α, β), the agant’s optimal level of effort is given by

e =
βθ

2ψ

Note that this level of effort does not depend on α. The agent agrees to provide the level
of effort if

α + βθe− ψe2 + av
1− p

p
β2θ2ϵ2 + as

1− p

p

1− 2p

p
β3θ3ϵ3 ≥ y0

Note that the left hand side of the above inequality is strictly increasing in α. Hence, there
is a minimum level of fixed pay αm such that the previous participation constraint is binding,
that is

F (αm, ϵ) := αm + βθe− ψe2 + av
1− p

p
β2θ2ϵ2 + as

1− p

p

1− 2p

p
β3θ3ϵ3 − y0 = 0 (73)

Point i) The minimum fixed pay increases with the aversion to variance

From (73), we have

dαm
dav

= −
1− p

p
β2θ2ϵ2 < 0

Hence, when av decreases (i.e., high aversion to variance), then the minimum fixed pay
increases.

Moreover

dαm
das

= −
1− p

p

1− 2p

p
β3θ3ϵ3

Hence, dαm

das
< 0 if p < 1

2
and dαm

das
< 0 if p > 1

2
.

This means that for p < 1
2
(resp. p > 1

2
) , the minimum fixed pay decreases (resp. increases)

with the preference for positively skewed lotteries.
Point ii)
The implicit function theorem applied to (73) leads to

dαm
dϵ

= −
1− p

p
β2θ2ϵ

(

2av + 3as
1− 2p

p
βθϵ
)

It follows that for p > 1
2
(negative skewness), we have dαm

dϵ
> 0.

Point iii)
In contrast, for p < 1

2
(positive skewness), we have

dαm
dϵ

> 0 ⇐⇒ −
av
as

> τto(β, ϵ)

with τto(β, ϵ) =
3

2

1− 2p

p
βθϵ.
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Point iv) Denote by τN(β, ϵ) =
S(L)

V (L)
=

1− 2p

p
βθϵ. Hence, the agent exhibits risk-aversion

if −
av
as

> τN(β, ϵ), is risk-neutral if −
av
as

= τN(β, ϵ) and risk-seeking if −
av
as

< τN(β, ϵ).

Clearly, τN(β, ϵ) =
S(L)

V (L)
=

1− 2p

p
βθϵ <

3

2

1− 2p

p
βθϵ = τto(β, ϵ).

Hence, for any couple (av, aS) such that −
av
as

∈ (τN(β, ϵ), τto(β, ϵ)) the agent is risk-averse

and the minimum fixed pay accepted α decreases with shock.

Point v)
Clearly, τto(β, ϵ) and τN(β, ϵ) increase with the shock ϵ and β.
QED.

E- Prospect theory (PT) analysis

In this section, we assume the agent is endowed with a reference-dependence utility function of
the following form:

uR(x,R) = x+ v(x−R) (74)

where x is the absolute outcome, R the reference point and v(.) is a value function à la Tversky
and Kahneman (1992), that is assumed to be continuous and strictly increasing with v(0)=0.
Following Tversky and Kahneman (1992) and Abdellaoui et al. (2008), we specify the value
function as follows:

v(x−R) =

{

u(x−R) if x ≥ R

λu(x−R) if x < R
(75)

where λ > 0 is the loss-aversion index and u(.) is the basic utility function. Following the
LEN model, we assume the following exponential utility function:

v(x−R) =











1− exp
(

− r+(x−R)
)

r+
if x ≥ R

−λ
exp
(

r−(x−R)
)

− 1

r−
if x < R

(76)

with r+ and r− representing the index of absolute risk-aversion in the gain and loss domains
respectively.

We denote the probability weighting function in the gain (x ≥ R) and loss (x < R) domains
by w+(.) and w−(.). We refer to probability risk-aversion [risk-seeking] as the case in which
w+(p) ≤ p and w−(1− p) ≥ 1− p [w+(p) > p and w−(1− p) < 1− p]

We consider the mixed lottery L = (x1, x2; p, 1 − p) with x1 ≥ R ≥ x2, which is valued as
follows:

V (L) = w+(p)uR(x1, R) + w−(1− p)uR(x2, R) (77)

In our principal-agent setup (see Section 2.1), the agent is facing a lottery with x1 =

α + βθ

(

e+ 1−p
p
ϵ

)

− ψe2 and x2 = α + βθ

(

e− ϵ

)

− ψe2. We further assume that the agent’s

reference point is given by the expected value of the lottery:

R = α + βθe− ψe2 (78)
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The risk-free reference point ensures that the agent is systematically in the gain domain
when the random shock yields a positive outcome (i.e., 1−p

p
ϵ) and in the loss domain otherwise

(i.e., −ϵ).
Based on the previous assumptions, the following proposition summarizes the results re-

garding the optimal behavior of the agent and the principal.

Proposition E1 (Risk-incentives tradeoff with PT). Under A0, A1, A2, A3’, A3”, A4,
A5 and assuming a PT agent as specified in (77):
i) For a given contract (α, β), the optimal level of effort increases with θ, decreases with ψ
and does not depend on the fixed pay α, the utility curvature in loss domain r−, the utility
curvature in gain domain r+, the loss aversion index λ and the shock.
ii) β∗(ϵ, r, ψ, θ) and e∗(ϵ, r, ψ, θ) decrease with λ, r+ (the utility risk-aversion in the gain do-
main), probability risk-aversion (i.e., overweighting in loss domain and underweighting in gain
domain), while increases with r− (the utility risk-aversion in the loss domain).
iii) β∗(ϵ, r, ψ, θ) and e∗(ϵ, r, ψ, θ) are higher in the presence of shock than in its absence if the
agent exhibits sufficient probability risk-seeking, moderate utility curvature and loss-aversion.

Proof of Proposition E1:
Given the linear contract (α, β), the objective function of agent with a cost functionC(e) =

ψe2 is given by

PT (L) = w+(p)

[

x1 +
1− exp

(

− r+βθ 1p
p
ϵ
)

r+

]

+ w−(1− p)

[

x2 + λ
exp
(

− r−βθϵ
)

− 1

r−

]

(79)

with

x1 = α + βθ

(

e+ 1−p
p
ϵ

)

− ψe2 and x2 = α + βθ

(

e− ϵ

)

− ψe2.

The first-order condition of the agent’s maximization problem is given by

(βθ − 2ψe)[w+(p) + w−(1− p)] = 0

Since w+(p) + w−(1− p) ̸= 0, it follows that the optimal effort function is given by

e =
βθ

2ψ

Point i)
The optimization problem of the principal is to maximize the expected value of θz − y by

accounting for the agent’s incentive compatibility constraint (IC) and participation constraint
(PC):







































max
α,β

π = θe− (α + βθe)

s.t. :

e = βθ

2ψ

w+(p)

[

x1 +
1− exp

(

− r+βθ 1p
p
ϵ
)

r+

]

+ w−(1− p)

[

x2 + λ
exp
(

− r−βθϵ
)

− 1

r−

]

= y0

which is equivalent to
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max
β

θ2

2ψ

(

β−0.5β2)+
1

w+(p) + w−(1− p)

[

w+(p)
1− exp

(

− r+βθ 1−p
p
ϵ
)

r+
+λw−(1−p)

exp
(

− r−βθϵ
)

− 1

r−
+βθϵ

(

w+(p)
1− p

p
−w−(1−p)

)

−y0

]

The first-order conditions are given by

θ2

2ψ

(

1−β)+
θϵ

w+(p) + w−(1− p)

[

w+(p)
1− p

p
exp

(

−r+βθ
1− p

p
ϵ
)

−λw−(1−p)exp
(

−r−βθϵ
)

+w+(p)
1− p

p
−w−(1−p)

]

= 0 (80)

Equation (80) defines the optimal variable pay β∗ (α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ). The opti-
mal variable pay in the absence of shock (ϵ = 0) is given by lim

ϵ−→0
β∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ) =

1.
The implicit function theorem applied to (80) leads to

∂β∗

∂λ
< 0 (81)

∂β∗

∂r+
< 0 (82)

∂β∗

∂r−
> 0 (83)

Since e∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ) = θ
2ψ
β∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ), it also follows

that
∂e∗

∂λ
< 0 ,

∂e∗

∂r+
< 0 ,

∂e∗

∂r−
> 0.

For given probability p = p, denote by δ+ = w+(p) and δ− = w+(1 − p); then implicit
function theorem applied to (80) leads to

∂β∗

∂δ+
> 0

∂β∗

∂δ−
< 0

Since e∗(α, ϵ, r+, r−, λ, w+, w−, ψ, θ) = θ
2ψ
β∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ), it also follows

that
∂e∗

∂δ+
> 0 ,

∂e∗

∂δ−
< 0.

Point iii)
From (80) we have

w+(p)
p

w−(1−p)
1−p

>
1 + λexp(−r−β∗θϵ)

1 + exp
(

− r+β∗θ 1−p
p
ϵ
) ⇐⇒ β∗ > 1 = lim

ϵ−→0
β∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ)

Since e∗(α, ϵ, r+, r−, λ, w+, w−, ψ, θ) = θ
2ψ
β∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ), it also follows

that

w+(p)
p

w−(1−p)
1−p

>
1 + λexp(−r−β∗θϵ)

1 + exp
(

− r+β∗θ 1−p
p
ϵ
) ⇐⇒ e∗ >

θ

2ψ
= lim

ϵ−→0
e∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ)

Hence, β∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ) and e∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ) are higher in
the presence of shock than in its absence if the agent exhibits sufficient probability risk-seeking,
moderate utility curvature and loss-aversion.
QED.
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F- Elicitation of risk preferences

We consider binary lotteries denoted by L = (x, y; p, 1 − p), with x being the outcome that
occurs with probability p, and y being the outcome that occurs with probability 1−p. We use 15
lotteries presented in the Table 8. They are a combination of 5 probabilities (p1, p2, p3, p4, p5) =
(0.1, 0.25, 0.33, 0.50, 0.75) and three couples of outcomes {(100, 0), (100, 50), (50, 0)}. The elicit
certainty equivalents for each lotteries using the switching outcomes technique (e.g., Tversky
and Kahneman, 1992; Gonzalez and Wu, 1999; Abdellaoui et al., 2008).

Table 8: Lotteries in the experiment

N◦ Lottery x y p
1 100 0 0.1
2 100 50 0.1
3 50 0 0.1
4 100 0 0.25
5 100 50 0.25
6 50 0 0.25
7 100 0 0.33
8 100 50 0.33
9 50 0 0.33
10 100 0 0.50
11 100 50 0.50
12 50 0 0.50
13 100 0 0.75
14 100 50 0.75
15 50 0 0.75

In addition, we utilize the 30 values of the minimum fixed pay elicited in the main experiment
to obtain further certainty equivalent data. The insight is that the outside option of 1000 is
the certainty equivalent of the lottery L = (x, y; p, 1− p) in which

x = αm +
β2θ2

4ψ
+

1− p

p
βθϵ and y = αm +

β2θ2

4ψ
− βθϵ

We then have in total 45 certainty equivalent data points per individual such that each
of the 5 probabilities is presented in 9 binary lotteries. We use this dataset to estimate the
parameters of EUT, RDU and MVS at the individual level.

RDU and EUT

For RDU, we follow the procedure developed in Kpegli et al. (2022) to estimate probability
weights. Denote by ce,x and y respectively the values of certainty equivalent, the high outcome
x and the small outcome y. Also, denote by Ik the dummy variable for the probability pk, that
is a variable that takes value 1 if probability is equal to pk and 0 otherwise. We assume CARA
utility function so that we have the following empirical equation for certainty equivalent:

cel = −
1

r
ln

[

(

exp
(

− rxl
)

− exp
(

− ryl
)

)

K
∑

k=1

δkI
k
l + exp

(

− ryl
)

]

+ el (84)

where e is the error term, l is the lth line in ce,x,y and e; r the CARA coefficient and
w(pk) = δk for k = 1, 2, ..., 5. We assume that the error term is normally distributed with mean
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0 and heteroscedastic variance σl = σ|xl − yl|. We then estimate r, δk and σ by maximum
likelihood method.

For the special case of EUT, we assume δk = pk and estimate only r and σ.

MVS

Under MVS, certainty equivalents satisfy the following empirical equation

cel = El + avVl + avSl + el

with ce,E,V and S denoting respectively values of certainty equivalent, mean, variance
and skewness associated with each of the 45 lotteries.

We assume that the error term is normally distributed with mean 0 and heteroscedastic
variance σl = σ|xl − yl|. We then estimate av, as and σ by maximum likelihood method.

Table 9: Mean of individual estimates†,‡

EU MVS RDU

Coef. 95% CI Coef. 95% CI Coef. 95% CI(b)

r 0.0038 [0.0022,0.0055] - - 0.0023 [0.0015,0.0031]
av - - -0.00097 [-0.0011, -0.0008] - -
as - - 4.8× 10−7 [4.0× 10−7, 5.6× 10−7] - -

w(0.10) - - - - 0.2231 [0.2034,0.2429]
w(0.25) - - - - 0.3278 [0.3105,0.3450]
w(0.33) - - - - 0.3729 [0.3553,0.3904]
w(0.50) - - - - 0.4856 [0.4685,0.5026]
w(0.75) - - - - 0.6409 [0.6208,0.6610]

† The parameters are computed from regression models controlling for individual heteroscedasticity due to
observable individual characteristics (i.e., numeracy test score, cognitive reflection test score, gender and
age).
‡ Standard errors clustered at the individual level when computing 95% CI due to multiple probability
weights per subject.
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Table 10: Mean of minimum fixed pay across treatments†

p β e‡ αm3 α4
m αm4 − αm3 α0

m α3
m − α0

m α4
m − α0

m

0.1 0.30 3.00 881.3∗∗∗ 901.4∗∗∗ 20.05∗∗∗ 910.00 -28.69∗∗∗ -8.64
0.1 0.50 5.00 750.0∗∗∗ 792.9∗∗∗ 42.95∗∗∗ 750.00 -0.01 42.95∗∗∗

0.1 0.70 7.00 579.9∗∗∗ 628.3∗∗∗ 48.49∗∗∗ 510.00 69.86∗∗∗ 118.3∗∗∗

0.25 0.30 3.00 898.1∗∗∗ 917.6∗∗∗ 19.44∗∗∗ 910.00 -11.87∗∗∗ 7.57
0.25 0.50 5.00 761.7∗∗∗ 803.5∗∗∗ 41.82∗∗∗ 750.00 11.67** 53.49∗∗∗

0.25 0.70 7.00 582.2∗∗∗ 626.8∗∗∗ 44.57∗∗∗ 510.00 72.22∗∗∗ 116.8∗∗∗

0.33 0.30 3.00 900.5∗∗∗ 926.1∗∗∗ 25.65∗∗∗ 910.00 -9.505∗∗∗ 16.14∗∗∗

0.33 0.50 5.00 780.6∗∗∗ 795.1∗∗∗ 14.56∗∗∗ 750.00 30.55∗∗∗ 45.11∗∗∗

0.33 0.70 7.00 590.7∗∗∗ 620.2∗∗∗ 29.44∗∗∗ 510.00 80.72∗∗∗ 110.2∗∗∗

0.5 0.30 3.00 919.6∗∗∗ 926.2∗∗∗ 6.597** 910.00 9.642∗∗∗ 16.24∗∗∗

0.5 0.50 5.00 773.6∗∗∗ 786.4∗∗∗ 12.82∗∗∗ 750.00 23.63∗∗∗ 36.45∗∗∗

0.5 0.70 7.00 582.5∗∗∗ 615.4∗∗∗ 32.86∗∗∗ 510.00 72.53∗∗∗ 105.4∗∗∗

0.75 0.30 3.00 916.7∗∗∗ 937.6∗∗∗ 20.94∗∗∗ 910.00 6.685∗∗∗ 27.63∗∗∗

0.75 0.50 5.00 778.4∗∗∗ 789.5∗∗∗ 11.02** 750.00 28.45∗∗∗ 39.47∗∗∗

0.75 0.70 7.00 571.5∗∗∗ 607.3∗∗∗ 35.87∗∗∗ 510.00 61.45∗∗∗ 97.32∗∗∗

Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 for the significance of coefficient tests.

† Mean of fixed pay are computed from regression analyses by allowing heteroscedasticity due to observable
individual characteristics (i.e., numeracy skills, cognitive skills, gender and age).
‡ According to the calibration (ψ, θ) = (2.5, 100), the effort is computed as e = βθ

2ψ .
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G - Decomposition of the cells in Table 6 according to the estimated
risk attitudes

Table 11: RIT, risk-attitudes, and curvature of utility under EUT

RIT and Risk-averse
Number Percentage

Concave 14 1.55 %
Convex 891 98.45%
Total 905 100%

RIT and Risk-neutral
Number Percentage

Concave 23 9.96%
Convex 208 90.04%
Total 231 100%

RIT and Risk-seeking
Number Percentage

Concave 229 36.12%
Convex 405 63.88%
Total 634 100%

No-RIT and Risk-averse
Number Percentage

Concave 24 5.06%
Convex 450 94.94%
Total 474 100%
No-RIT and Risk-neutral

Number Percentage
Concave 40 10.55%
Convex 339 89.45%
Total 379 100%
No-RIT and Risk-seeking

Number Percentage
Concave 112 47.06%
Convex 126 52.94%
Total 238 100%
Reversed RIT and Risk-averse

Number Percentage
Concave 77 19.40%
Convex 320 80.60%
Total 397 100%

Reversed RIT and Risk-neutral
Number Percentage

Concave 32 28.32%
Convex 81 71.68%
Total 113 100%

Reversed RIT and Risk-seeking
Number Percentage

Concave 124 67.39%
Convex 60 32.61%
Total 184 100%
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Table 12: RIT, risk attitudes, and utility curvature and probability weighting under RDU

Number (%) Underweighting Overweighting Total
RIT and Risk-averse

Convex 18 0 18
(1.99 %) (0.00 %) (1.99%)

Concave 404 484 887
(44.64%) (53.37%) (98.01%)

Total 422 483 905
(46.63%) (53.37%) (100%)

RIT and Risk-neutral
Convex 8 2 10

(19.41%) (68.78%) (4.33%)
Concave 105 116 221

(45.45%) (50.22%) (95.67%)
Total 113 118 231

(48.92%) (51.08%) (100%)
RIT and Risk-seeking

Convex 72 51 123
(11.36%) (8.04%) (19.40%)

Concave 123 388 511
(19.40%) (61.20%) (80.60%)

Total 195 439 634
(40.08%) (69.24%) (100%)

No RIT and Risk-averse
Convex 48 2 50

(10.13%) (0.42%) (10.55%)
Concave 206 218 424

(43.46%) (45.99%) (89.45%)
Total 254 220 474

(53.59%) (46.41%) (100%)
No RIT and Risk-neutral

Convex 46 8 54
(12.14%) (2.11%) (14.25%)

Concave 180 145 325
(47.49%) (38.26%) (85.75%)

Total 226 153 379
(59.63%) (40.37%) (100%)

No RIT and Risk-seeking
Convex 28 31 59

(11.76%) (13.03%) (24.79%)
Concave 31 148 179

(13.03%) (62.18%) (75.21%)
Total 59 179 238

(24.79%) (75.21%) (100%)
Reversed RIT and Risk-aversion

Convex 30 9 39
(7.56%) (2.27%) (9.82%)

Concave 168 190 358
(42.32%) (47.86%) (90.18%)

Total 198 199 397
(49.87%) (50.13%) (100%)

Reversed RIT and Risk-neutral
Convex 10 6 16

(8.85%) (5.31 %) (14.16%)
Concave 29 68 97

(25.66%) (60.18%) (85.84%)
Total 39 74 113

(34.51%) (65.49%) (100%)
Reversed RIT and Risk-seeking

Convex 16 35 51
(8.7%) (19.02%) (27.72%)

Concave 14 119 133
(7.61%) (64.67%) (72.28%)

Total 30 154 184
(16.3%) (83.7%) (100%)
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Table 13: RIT, risk-attitudes, and preference/aversion for skewness and variance under MVS

Number (%) Aversion for skewness Preference for skewness Total
RIT and Risk-averse

Preference for variance 13 1 14
(1.44%) (0.11%) (1.55%)

Aversion to variance 20 871 891
(2.21%) (96.24 %) (98.45%)

Total 33 872 905
(3.65%) (96.35 %) (100.00 %)

RIT and Risk-neutral
Preference for variance 19 1 20

(8.23%) (0.43%) (8.66%)
Aversion to variance 3 208 211

(1.30%) (90.04%) (91.34%)
Total 22 209 231

(9.52%) (90.48%) (100.00%)
RIT and Risk-seeking

Preference for variance 213 13 226
(33.60%) (2.05%) (35.65%)

Aversion for variance 17 391 408
(2.68%) (61.67%) (64.35%)

Total 230 404 634
(36.28%) (63.72%) (100.00%)

No RIT and Risk-averse
Preference for variance 21 4 25

(4.43%) (0.84%) (5.27%)
Aversion for variance 10 439 449

(2.11%) (92.62%) (94.73%)
Total 31 443 474

(6.54%) (93.46%) (100.00%)
No RIT and Risk-neutral

Preference for variance 27 11 38
(7.12%) (2.90%) (10.03%)

Aversion for variance 9 332 341
(2.37%) (87.60%) (89.97%)

Total 36 343 379
(9.50%) (90.50%) (100.00%)

No RIT and Risk-seeking
Preference for variance 100 11 111

(42.02%) (4.62%) (46.64%)
Aversion for variance 10 117 127

(4.20%) (49.16%) (53.36%)
Total 110 128 238

(46.22%) (53.78%) (100.00%)
Reversed RIT and Risk-aversion

Preference for variance 66 6 72
(16.62%) (1.51%) (18.14%)

Aversion for variance 12 313 325
(3.02%) (78.84%) (81.86%)

Total 78 319 397
(19.65%) (80.35%) (100.00%)

Reversed RIT and Risk-neutral
Preference for variance 29 2 31

(25.66%) (1.77%) (27.43%)
Aversion for variance 4 78 82

(3.54%) (69.03%) (72.57%)
Total 33 80 113

(29.20%) (70.80%) (100.00%)
Reversed RIT and Risk-seeking

Preference for variance 112 11 123
(60.87%) (5.98%) (66.85%)

Aversion for variance 5 56 61
(2.72%) (30.43%) (33.15%)

Total 117 67 184
(63.59%) (36.41%) (100.00%)

H-Experimental instructions
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H1- Instruction for Day 1 

 

H1-1: Numeracy Test 

 

Thank you for participating in this experiment. This experiment is composed of two parts. In the 

first part that you will perform today, you will answer a series of questions. The duration of this 

first part of the experiment will be approximately 30 minutes. After completing the first part, you 

will be invited to participate in a second part in the next few days. By participating in this first part, 

you agree to complete the second part. 

Payments for both parts will be made early next week once you have completed the second part of 

the experience. A participation bonus of 4 euros will be added to your payments for your 

participation in both parts. 

The experience will be done entirely online. All the information you need to make your decisions 

will be visible on the screen. You will not need to consult any other documents, so we ask you to 

stay focused on the instructions and on your decisions during the experiment.  

 

Please answer the following questions carefully. 

Each question has one and only one correct solution. 

If you are ready, please proceed to the next page. 

 

Imagine that we toss an undamaged coin 1,000 times. What is your best estimate of the number of 

times the coin will land on the face side over 1,000 tosses? 

Indicate your answer (integer between 0 and 1,000) below: 

 

 

  

A lottery ticket has a 1% chance of winning a $10 prize. Suppose 1,000 people buy a ticket, what 

is your best estimate of the number of people who would win the $10 prize? 

Indicate your answer (integer between 0 and 1,000) below:  

 

 



 

In a television show, the probability of winning a car is 1 in 1,000. What percentage of the 

contestants on the television show win a car? 

State your answer (in percentages, use the comma "," if necessary) below: 

 

 

 

Out of 1,000 students at a university, 500 are enrolled in the economics-management field. Of these 

500 economics and management students, 100 are male students. Out of the 500 students who are 

not in economics and management, 300 are male students. What is the probability that a randomly 

drawn male student will be enrolled in the economics-management major? Please state the 

probability as a percentage. 

Indicate your answer (whole number between 0 and 100) below: 

 

 

Imagine that we roll a five-sided die 50 times. On average, out of these 50 throws, how many times 

will this five-sided die show an odd number (1, 3 or 5)? 

 

  

 

Indicate your answer (integer between 0 and 50) below: 

 

 

H1-2:  Probability training 

In the next screen, we will show you a table with a certain number of cells. The cells with the same 

number will be represented with the same color. The computer will choose a cell at random and 

repeat this operation a large number of times. Each time the computer chooses a square, it will 

appear dark. The percentage of times a number was chosen by the computer during the simulation 

will appear at the bottom of the table. 

So a number that appears in more boxes will be selected by the computer more often. For example, 

if the number 400 appears in 7 out of 9 cells, it will be chosen 7 times out of 9 if the simulation is 

long enough, that is, 78% of the time (7/9=78%). 



 

Here is an example of a table. You can finish the simulation performed by the computer by clicking 

on the 'Finish Simulation' button. 

 

 

Below each table, you will be asked to enter an estimate of the percentage of times the computer 

will choose a number represented in the table in the case of a simulation of 100,000 numbers. 

You will earn 10 cents for each correct answer, i.e., an answer that does not differ from the 

simulation result by more than 5%. 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 400 on a simulation of 100 000 numbers? 

 

  

% 

(Enter an integer between 0 and 100) 

 

 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 600 on a simulation of 100 000 numbers? 

 



 

  

% 

(Enter an integer between 0 and 100) 

 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 300 on a simulation of 100 000 numbers? 

 

  

% 

(Enter an integer between 0 and 100) 

 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 900 on a simulation of 100 000 numbers? 

 

  

% 

(Enter an integer between 0 and 100) 

 

 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 700 on a simulation of 100 000 numbers? 



 

 

  

% 

(Enter an integer between 0 and 100) 

 

 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 800 on a simulation of 100 000 numbers? 

 

  

% 

(Enter an integer between 0 and 100) 

 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 900 on a simulation of 100 000 numbers? 

 

  

% 

(Enter an integer between 0 and 100) 

 

H1-3: Probability weighting 

 

In this task you will be asked to make a series of choices. You will see 15 tables, each consisting 

of 11 rows. Each row has two options; of which you must choose one: 'Option A' or 'Option B'. 



 

Option A gives you a sure win. 

Option B is a lottery that gives you a certain win with a 33% chance and another win with a 67% 

chance. Option B changes from table to table, but it is the same for all 11 rows in a given table. 

All amounts in the tables are in euro cents. 

When the experiment is over, only one row from all the rows in all the tables will be randomly 

selected for payment. Thus, each line has the same probability of being chosen for the payouts, so 

you should pay equal attention to all your choices. 

 

Example of a table: 

 

 

In each line, you will be asked to indicate whether you prefer option A or option B. 

Both options are initially displayed in gray. Click on either option to select it. Your selection will 

be highlighted in orange. You can change your selection at any time by clicking on the box that 

corresponds to the desired option. 

 

The computer will help you make your choices by avoiding mistakes. For example, if you select 

'Option A' for a given line, the computer will mark 'Option A' for all previous lines (up to the first). 

Similarly, if you select 'Option B' for a line, the computer will mark 'Option B' for all subsequent 

lines (up to the last one). 

 



 

Let's assume that the following line has been chosen for the payment calculation: 

 

 

 

• If you selected 'Option A' for this line, you will win 70 cents. 

• If you selected 'Option B' for this line, the computer will randomly choose a number 

between 1 and 3 to determine your winnings. 

- If the randomly selected number is 1 (33% chance), you will win 100 cents. 

- If the randomly chosen number is 2 or 3 (67% chance), you will win 50 cents. 

If you are ready, click on '>>' to start. 

 

Select an option for TABLEAU#1 

 

 



 

 

Select an option for TABLEAU#2 

 

 

Select an option for TABLEAU#3 



 

 

 

 

Select an option for TABLEAU#4 

 

 



 

Select an option for TABLEAU#5 

 

 

Select an option for TABLEAU#6 

 

 



 

 

Select an option for TABLEAU#7 

 

Select an option for TABLEAU#8 

 



 

 

Select an option for TABLEAU#9 

 

 

Select an option for TABLEAU#10 



 

 

 

 

Select an option for TABLEAU#11 

 



 

 

Select an option for TABLEAU#12 

 

 

Select an option for TABLEAU#13 



 

 

 

Select an option for TABLEAU#14 

 

 

Select an option for TABLEAU#15 



 

 

 

H1-4: : Holt&Laury_1Switch 

In the next screen, you will be asked to make ten choices (one choice for each row of the table). 

Each time, you will be asked to indicate whether you prefer 'Option A' or 'Option B'. When the 

experiment is complete, one row of the table will be randomly selected for payment. This means 

that each row has the same probability of being selected for the payout, so you should pay equal 

attention to all your choices. 

Your winnings will depend on whether you choose 'Option A' or 'Option B'. To determine your 

winnings, a number between 1 and 10 will be randomly selected by the computer. 

All amounts in the tables are in cents. 

 

For each of the 10 rows in the table, you will be asked to indicate whether you prefer 'Option A' or 

'Option B'. 

Both options are initially displayed in gray. Click on one of the two options to select it. Your 

selection will be highlighted in orange. You can change your selection at any time by clicking on 

the box that corresponds to the desired option. 

 

The computer will help you make your selection without errors. For example, if you select 'Option 

A' for a given line, the computer will mark 'Option A' for all previous lines (up to the first). 

Similarly, if you select 'Option B' for a line, the computer will mark 'Option B' for all subsequent 

lines (up to the last one). 

 

Suppose the following line was randomly selected for payment: 

 

 

 

•  If you selected 'Option A' (by clicking on the box 'A4') and the computer randomly selected 

the number : 



 

- 1, 2, 3 or 4 you win 100 euro cents 

- 5, 6, 7, 8, 9 or 10 you win 80 cents 

•  If you have selected 'Option B' (by clicking on the box 'B4') and the second number is : 

- 1, 2, 3 or 4 you win 190 cents 

- 5, 6, 7, 8, 9 or 10 you win 5 euro cents 

 

You can click on the 'A4' or 'B4' boxes now to practice selecting an option (it will be highlighted 

in orange). 

 

 

Therefore, the color of the numbers in the 'Random Number' column represents your chances of 

getting each possible payout. 

The more purple numbers in a row, the more likely you are to get 100 or 190 cents, depending on 

whether you select 'Option A' or 'Option B', and the less likely you are to get the green amounts if 

that row is selected at random for payment. 

The more numbers colored green on a line, the more likely you are to get 80 or 5 cents, depending 

on whether you select 'Option A' or 'Option B', and the less likely you are to get the purple amounts 

if that line is randomly selected for payment. 

 

In summary, you will have ten choices: in each row of the table, you will have to choose between 

Option A and Option B. You can choose option A in some rows and option B in others, and you 

can change your choices and take them in any order. 

If you are ready, click on '>>' to begin. 

 

 

 

 

 

 

 

 

 



 

 

In each of the following 10 lines, indicate whether you prefer 'Option A' or 'Option B'. 

 

 

Select 'Option A' or 'Option B' for line #1 by clicking on box 'A1' or box 'B1'. 

 

H1-5: Loss aversion 

In the next screen, you will be asked to make ten choices (one choice for each row of the table). 

Each time, you will be asked to indicate whether you prefer 'Option A' or 'Option B'. When the 

experiment is complete, one row of the table will be randomly selected for payment. This means 

that each row has the same probability of being selected for the payout, so you should pay equal 

attention to all your choices. Your winnings will depend on whether you choose 'Option A' or 

'Option B'. To determine your winnings, a number between 1 and 10 will be randomly selected by 

the computer. 

In each case, 'Option A' and 'Option B' are such that they generate losses with a 50% probability 

and wins with a 50% probability. 

In the table, option A is different in each row, while option B remains the same in all rows: 'lose 

100 cents with 50% chance, win 100 cents with 50% chance'. 

All the amounts that appear in the tables are in euro cents. 

In this part of the experiment, any winnings you make will be added to your total winnings and any 

losses you suffer will be subtracted from your total winnings. 



 

 

 

For each of the 10 rows in the table, you will be asked to indicate whether you prefer 'Option A' or 

'Option B'. 

Both options are initially displayed in gray. Click on one of the two options to select it. Your 

selection will be highlighted in orange. You can change your selection at any time by clicking on 

the box that corresponds to the desired option. 

The computer will help you make your choices by avoiding mistakes. For example, if you select 

'Option A' for a given line, the computer will mark 'Option A' for all previous lines (up to the first). 

Similarly, if you select 'Option B' for a line, the computer will mark 'Option B' for all subsequent 

lines (up to the last one). 

 

 

 

Example:  

Suppose the following line was randomly selected for payment: 

 

 

 

 

• If you selected 'Option A', you have a 50% chance of losing 175 cents and a 50% chance 

of winning 500 cents 

• If you selected 'Option B', you will have a 50% chance of losing 100 cents and a 50% 

chance of winning 100 cents 

Now you can click on the boxes corresponding to 'Option A' or 'Option B' to practice selecting an 

option (it will be highlighted in orange). 

 

 

In summary, 1 of the 10 rows in the table will be selected at random, and your choice ('Option A' 

or 'Option B') will determine how much money you can receive in that part of the experiment. 



 

• If you chose 'Option A' for the randomly selected row, you will either win the corresponding 

amount of money (with a 50% chance) or lose the corresponding amount of money (with a 

50% chance). 

• If you chose 'Option B' for the randomly selected line, you will either win 100 cents (with 

a 50% chance) or lose 100 cents (with a 50% chance). 

 

If you are ready, click on '>>' to start. 

 

 

 

 

 

 

 

 

 

 

In each of the following 10 lines, indicate whether you prefer 'Option A' or 'Option B'. 



 

 

 

Select 'Option A' or 'Option B' for line #1 by clicking on box 'A1' or box 'B1'. 

 

 

H1-6: Cognitive reflection test - Problems 

Please answer the following questions carefully. 

Each question has only one solution. 

You will have exactly 5 minutes to answer all the questions. 

If you are ready, click on '>>' to begin. 

 

 



 

 

 

A table and a chair cost 150 euros in total. The table costs 100 euros more than the chair. How 

much does the chair cost? 

(answer below in euros) 

 

 

 

If it takes 10 hours for 10 mechanics to repair 10 cars, how long would it take 80 mechanics to 

repair 80 cars? 

(answer below in hours) 

 

 

 

 

A new library buys books for its collection. Each week the number of books purchased doubles. If 

it takes 36 weeks to buy all the books they need, how long would it take the library to buy half the 

books they need? 

 

(answer below in weeks) 

 

 

 

In the zoo, the lions eat a ton of meat every 6 weeks, and the tigers eat a ton of meat every 12 

weeks, how long would it take the lions and tigers together to eat a ton of meat? 

 

(answer below in weeks) 

 



 

 

 

John had the 25th fastest time and the 25th slowest time in a race. How many people participated 

in the race? 

(answer below) 

 

 

An art collector buys a famous painting for 50 million and sells it for 60 million. A few years later, 

the collector buys it back for 70 million and sells it for 80 million. How much money did the 

collector make in the end? 

(answer below in millions) 

 

 

Marie invested 12,000 euros in the stock market in November 2013. Six months later, in May 2014, 

the shares she had bought had fallen by 50%. Fortunately for Marie, from May 2014 to August 

2014, the shares she had purchased had increased by 75%. At this point, Mary: 

• earned money 

• lost money 

• did not make or lose any money 

 

H1-7: Demographics 

Please answer the following sociodemographic questions: 

 

Gender: 

• Male 

• Female  

• Other 

Age (in years): 

 

 



 

Nationality: 

 

 

What was the size of the community where you lived the most time in your life? 

• Less than 2000 inhabitants 

• Between 2000 and 10000 inhabitants 

• Between 10000 and 100000 inhabitants 

• More than 10000 inhabitants 

 

How many brothers and sisters do you have? 

What is your position among your siblings? 

 

(Please answer with a number. 1 = oldest) 

 

To what extent have you been involved in other studies like this? 

 

How do you see yourself: are you generally a person who is fully willing to take risks or do you 

try to avoid taking risks? 

Please select a number on the scale, where 0 means 'not at all willing to take risks' and 10 means 

'very willing to take risks'. 

 

 



 

 

H2- Instruction for Day 2 

 

Welcome to the second part of the experiment! 

We remind you that this experiment will take place entirely online. All the information you need 

to make your decisions will be visible on the screen. You will not need to consult any other 

documents, so we ask you to stay focused on the instructions and your decisions during the 

experiment. 

A participation bonus of €4 will be added to your winnings from the experiment and will be paid 
to you at the end of this part of the experiment. 

Pour commencer, veuillez saisir votre IDENTIFIANT ci-dessous. 

Cet IDENTIFIANT vous a été donné lors de votre participation à la première partie de 

l’expérience. Vous ne pourrez pas participer et être rémunéré pour cette deuxième partie si vous 
n'avez pas effectué la première partie. 

En général, votre IDENTIFIANT est composé des trois premières lettres de votre nom de famille 

et des six derniers chiffres de votre IBAN. 

Si vous ne vous souvenez pas de votre IDENTIFIANT et avez des difficultés à vous connecter, 

veuillez contacter kpegli@gate.cnrs.fr 

 

 

 

H2-1 :  Probability training 

In the next screen we will show you a table with a number of cells. Identical numbers will be 

shown in the same colour. The computer will choose a square at random and repeat this operation 

a large number of times. Each time the computer chooses a square, it will appear dark. The 

percentage of times that a number has been chosen by the computer during the simulation will 

appear at the bottom of the table. 

Therefore, a number that appears in more boxes will be selected by the computer more often. For 

example, if the number 400 appears in 7 out of 9 cells, it will be chosen 7 times out of 9 if the 

simulation is long enough, i.e., 78% of the time (7/9=78%). 

 

Example: 

Here is an example of a table. You can end the computer simulation by clicking on the 'End 

Simulation' button. 



 

 

 

Please click on '>>' to continue. 

Below each table, you will be asked to enter an estimate of the percentage of times the computer 

will choose a number represented in the table in the case of a simulation of 100,000 numbers. 

You will earn 10 cents for each correct answer, i.e., an answer that does not differ from the 

simulation result by more than 5%. 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 800 on a simulation of 100 000 numbers? 

 

  

% 

(Enter an integer between 0 and 100) 

 

 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 600 on a simulation of 100 000 numbers? 

 



 

  

% 

(Enter an integer between 0 and 100) 

 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 400 on a simulation of 100 000 numbers? 

 

  

% 

(Enter an integer between 0 and 100) 

 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 300 on a simulation of 100 000 numbers? 

 

  

% 

(Enter an integer between 0 and 100) 

 

 

 



 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 500 on a simulation of 100 000 numbers? 

 

  

% 

(Enter an integer between 0 and 100) 

 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 900 on a simulation of 100 000 numbers? 

 

  

% 

(Enter an integer between 0 and 100) 

 

 

Given the numbers in the table, what do you think will be the percentage of cases where the result 

obtained by the computer will be 900 on a simulation of 100 000 numbers? 

  

% 

(Enter an integer between 0 and 100) 

 

H2-2: Main task  

 

In this task, you will be asked to make a series of choices. You will see several tables displayed 

one by one, each consisting of several rows. Each row has two options, of which you must 

choose one: either Option A or Option B. 



 

Option A gives you a sure win. This option will remain the same throughout this part of the 

experience. This option will not change within a table or between tables. 

Option B is a lottery where only one amount is drawn from two possible amounts. One of the two 

amounts is coloured green and the other blue, and each has its own probability of being drawn at 

random. These probabilities are represented by the number of boxes of a certain colour (either 

green or blue) among all the coloured boxes (green or blue) in a row. This means that a number 

that appears on more squares has a higher chance of being chosen. The amounts and the 

distribution of the colours of the boxes change between the rows within each table, but also from 

one table to another. 

For each table, the computer will help you to make your choices without making mistakes. For 

example, if you select 'Option A' for a given row, the computer will mark 'Option A' for all the 

preceding rows (up to the first). Similarly, if you select 'Option B' for a line, the computer will 

mark 'Option B' for all subsequent lines (up to the last one). 

Once the experiment is complete, 1 table will be drawn from the 30 tables. For each of these 

boards, a line will be randomly selected for payment. Depending on your decisions, your payout 

for the board will be either the amount (in euro cents) of option A or the result (in euro cents) of 

the lottery for option B. 

Since each table has the same probability of being chosen for the payments, you should therefore 

pay the same attention to all your choices. All amounts that appear in the tables are in euro cents. 

For example, the amount 1000 corresponds to 10 euros. 

 

Example:  

Let's imagine that we have a table with a total of 7 possible payments associated with option B, 

and the following row of this table has been chosen for the calculation of the payments: 

 

If you selected 'Option A' for this line, you will win 1,000 cents. 

• If you selected 'Option B' for this line, the computer will randomly choose a number 

between 1 and 7 to determine your winnings. 

- If the randomly chosen number is 1 or 2 (2/7=29% chance), you will win 250 cents. 

- If the randomly chosen number is 3, 4, 5, 6 or 7 (5/7=71% chance), you will win 

1,150 euro cents. 

If you are ready, click on '>>' to start. 

 



 

 

 

 

Select an option for TABLEAU #1 

 



 

 

Select an option for TABLEAU #2 

 



 

 

 

Select an option for TABLEAU #3 

 



 

 

Select an option for TABLEAU #4 

 



 

 

Select an option for TABLEAU #5 

 



 

 

Select an option for TABLEAU #6 



 

 

Select an option for TABLEAU #7 



 

 

 

Select an option for TABLEAU #8 



 

 

Select an option for TABLEAU #9 



 

 

Select an option for TABLEAU #10 



 

 

Select an option for TABLEAU #11 



 

 

 

Select an option for TABLEAU #12 



 

 

 

Select an option for TABLEAU #13 

 

 



 

 

 

Select an option for TABLEAU #14 

 



 

 

Select an option for TABLEAU #15 

 



 

 

Select an option for TABLEAU #16 

 



 

 

Select an option for TABLEAU #17 

 



 

 

 

Select an option for TABLEAU #18 

 



 

 

 

Select an option for TABLEAU #19 

 



 

 

Select an option for TABLEAU #20 



 

 

Select an option for TABLEAU #21 



 

 

 

Select an option for TABLEAU #22 



 

 

 

Select an option for TABLEAU #23 



 

 

Select an option for TABLEAU #24 



 

 

Select an option for TABLEAU #25 



 

 

Select an option for TABLEAU #26 



 

 

Select an option for TABLEAU #27 



 

 

 

Select an option for TABLEAU #28 



 

 

Select an option for TABLEAU #29 



 

 

Select an option for TABLEAU #30 

 

Thank you for your participation. Your response has been recorded. 

 

Payments will be made early next week to allow all participants to complete the session and 

calculate your winnings. 
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