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Introduction

◮ In cooperative game theory and in decision making, the core
of a game or a capacity is a fundamental notion

◮ Whenever nonempty, the core is a bounded convex closed
polyhedron

◮ A famous result by Shapley gives the extreme points (vertices)
of the core for convex games

◮ However, for nonconvex games, there are few results on the
vertices of the core (Núñez and Rafels 1998, Tijs 2005, Núñez
and Solymosi)

◮ Our results extend the families introduced so far for classical
TU-games, and generalize the framework to games with
restricted cooperation

◮ Still not all vertices are known in the general case.
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Distributive lattices

◮ A poset (N,�) is a set N endowed with a partial order �
◮ Q ⊆ N is a downset of (N,�) if x ∈ Q and y � x imply

y ∈ Q.
◮ The set of downsets of (N,�) is denoted by O(N,�)
◮ Birkhoff’s theorem: any distributive lattice L is generated by a

poset N (and conversely): L = O(N,�)
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Conclusion: an order or hierarchy on a set N of players produces a
set of feasible coalitions F which is a distributive lattice (Faigle
and Kern 1992: games with precedence constraints)
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Games on distributive lattices

◮ N = {1, 2, . . . , n} set of players

◮ (N,�) with � a partial order is a hierarchy of players

◮ F = O(N,�) is the set of feasible coalitions (distributive
lattice)

◮ A game on F is a function v : F → R s.t. v(∅) = 0.
Notation: (N,�, v).

◮ A game is supermodular (or convex) if for all S ,T ∈ F ,

v(S ∪ T ) + v(S ∩ T ) > v(S) + v(T )
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The core of a game on F

◮ x ∈ R
N (payoff vector). Notation: x(S) =

∑

i∈S xi .
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The core of a game on F

◮ x ∈ R
N (payoff vector). Notation: x(S) =

∑

i∈S xi .

◮ Let (N,�, v) be a game. Its core is defined by:

C (N,�, v) = {x ∈ R
N | x(S) > v(S),∀S ∈ F , x(N) = v(N)}
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The core of a game on F

◮ x ∈ R
N (payoff vector). Notation: x(S) =

∑

i∈S xi .

◮ Let (N,�, v) be a game. Its core is defined by:

C (N,�, v) = {x ∈ R
N | x(S) > v(S),∀S ∈ F , x(N) = v(N)}

◮ The core is a closed convex polyhedron whenever nonempty,
which is unbounded except if F = 2N .
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The core of a game on F

◮ x ∈ R
N (payoff vector). Notation: x(S) =

∑

i∈S xi .

◮ Let (N,�, v) be a game. Its core is defined by:

C (N,�, v) = {x ∈ R
N | x(S) > v(S),∀S ∈ F , x(N) = v(N)}

◮ The core is a closed convex polyhedron whenever nonempty,
which is unbounded except if F = 2N .

◮ The extremal rays of the core are of the form 1{i} − 1{j} with
i ≺· j
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Extreme points of the core for supermodular games

◮ Π(F): set of total orders on N which are linear extensions of
�
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Extreme points of the core for supermodular games

◮ Π(F): set of total orders on N which are linear extensions of
�

◮ Each linear extension π induces a maximal chain in F :

∅ = Bπ
0 ,B

π
1 , . . . ,B

π
n = N

with Bπ
i = {π(1), . . . , π(i)}
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◮ Π(F): set of total orders on N which are linear extensions of
�

◮ Each linear extension π induces a maximal chain in F :

∅ = Bπ
0 ,B

π
1 , . . . ,B

π
n = N

with Bπ
i = {π(1), . . . , π(i)}

◮ Each linear extension π induces a marginal vector mπ,v ∈ R
N

defined by

mπ,v

π(i) = v(Bπ
i )− v(Bπ

i−1), ∀i ∈ {1, . . . , n}.
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Extreme points of the core for supermodular games

◮ Π(F): set of total orders on N which are linear extensions of
�

◮ Each linear extension π induces a maximal chain in F :

∅ = Bπ
0 ,B

π
1 , . . . ,B

π
n = N

with Bπ
i = {π(1), . . . , π(i)}

◮ Each linear extension π induces a marginal vector mπ,v ∈ R
N

defined by

mπ,v

π(i) = v(Bπ
i )− v(Bπ

i−1), ∀i ∈ {1, . . . , n}.

Theorem
(Fujishige and Tomizawa 1983, Derks and Gilles 1995) The game
(N,�, v) is supermodular if and only if every marginal vector mπ,v

with π ∈ Π(F) is a vertex of C (N,�, v).
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How many vertices?

Adapting an argument of Derks and Kuipers (2002) for classical
games, we can show:

Theorem
Let F = O(N,�) be given, and let κ(F) be the number of linear
extensions of (N,�). The core of any game v on F has at most
κ(F) vertices.
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How many vertices?

Adapting an argument of Derks and Kuipers (2002) for classical
games, we can show:

Theorem
Let F = O(N,�) be given, and let κ(F) be the number of linear
extensions of (N,�). The core of any game v on F has at most
κ(F) vertices.

This bound is attained for strictly supermodular games. For
classical games, κ(2N) = n!.
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Reduced games

Definition of the reduced game vS,x on set system
F(S) = {T ∩ S | T ∈ F} w.r.t. x ∈ R

N :

vS,x(T ) =











v(N) − x(N \ S), if T = S

0, if T = ∅

maxR⊆N\S,T∪R∈F{v(T ∪ R)− x(R)}, otherwise
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Reduced games

Definition of the reduced game vS,x on set system
F(S) = {T ∩ S | T ∈ F} w.r.t. x ∈ R

N :

vS,x(T ) =











v(N) − x(N \ S), if T = S

0, if T = ∅

maxR⊆N\S,T∪R∈F{v(T ∪ R)− x(R)}, otherwise

Note: We often write vS,xN\S
to emphasize that only xN\S is used.
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Reduced games

Definition of the reduced game vS,x on set system
F(S) = {T ∩ S | T ∈ F} w.r.t. x ∈ R

N :

vS,x(T ) =











v(N) − x(N \ S), if T = S

0, if T = ∅

maxR⊆N\S,T∪R∈F{v(T ∪ R)− x(R)}, otherwise

Note: We often write vS,xN\S
to emphasize that only xN\S is used.

The core satisfies the RGP (reduced game property) and the RCP
(reconfirmation property):

◮ RGP: for every x ∈ C (N,�, v) and ∅ 6= S ⊆ N,
xS ∈ C (S ,�, vS,xN\S

)

◮ RCP: for every x ∈ C (N,�, v) and ∅ 6= S ⊆ N,
yS ∈ C (S ,�, vS,xN\S

) implies (xN\S , yS) ∈ C (N,�, v).
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The basic idea of min-max vertices

◮ Consider a hierarchy (N,�)
k

j

i

· · · · · ·
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The basic idea of min-max vertices

◮ Consider a hierarchy (N,�)
k

j

i

· · · · · ·

◮ i is minimal ⇒ {i} ∈ F , hence xi ≥ v({i}) (lower bound)
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The basic idea of min-max vertices

◮ Consider a hierarchy (N,�)
k

j

i

· · · · · ·

◮ i is minimal ⇒ {i} ∈ F , hence xi ≥ v({i}) (lower bound)
◮ k maximal ⇒ N \ {k} ∈ F , hence

xk = x(N) − x(N \ k) ≤ v(N) − v(N \ k) (upper bound)
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The basic idea of min-max vertices

◮ Consider a hierarchy (N,�)
k

j

i

· · · · · ·

◮ i is minimal ⇒ {i} ∈ F , hence xi ≥ v({i}) (lower bound)
◮ k maximal ⇒ N \ {k} ∈ F , hence

xk = x(N) − x(N \ k) ≤ v(N) − v(N \ k) (upper bound)
◮ j is neither maximal nor minimal: then xj is unbounded in

both directions because 1{i} − 1{j} and 1{j} − 1{k} are
extremal rays.
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The basic idea of min-max vertices

◮ Consider a hierarchy (N,�)
k

j

i

· · · · · ·

◮ i is minimal ⇒ {i} ∈ F , hence xi ≥ v({i}) (lower bound)
◮ k maximal ⇒ N \ {k} ∈ F , hence

xk = x(N) − x(N \ k) ≤ v(N) − v(N \ k) (upper bound)
◮ j is neither maximal nor minimal: then xj is unbounded in

both directions because 1{i} − 1{j} and 1{j} − 1{k} are
extremal rays.

◮ Supposing that some core element satisfies xi = v({i}), by
RCP it suffices to find xN\i ∈ C (N \ i ,�, vN\i ,xi ) (nonempty
by RGP) to ensure that (xi , xN\i ) is a core element (same for
k)
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The basic idea of min-max vertices

Basic algorithm:

1. Choose some order π on the players such that π(i) is either
minimal or maximal in the poset ({π(i), . . . , π(n)},�) for
every i = 1, . . . , n;
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The basic idea of min-max vertices

Basic algorithm:

1. Choose some order π on the players such that π(i) is either
minimal or maximal in the poset ({π(i), . . . , π(n)},�) for
every i = 1, . . . , n;

2. Starting from player π(1), do successively for i = 1, . . . , n:
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The basic idea of min-max vertices

Basic algorithm:

1. Choose some order π on the players such that π(i) is either
minimal or maximal in the poset ({π(i), . . . , π(n)},�) for
every i = 1, . . . , n;

2. Starting from player π(1), do successively for i = 1, . . . , n:

2.1 Set xπ(i) to its lower or upper bound depending whether i is
minimal or maximal
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The basic idea of min-max vertices

Basic algorithm:

1. Choose some order π on the players such that π(i) is either
minimal or maximal in the poset ({π(i), . . . , π(n)},�) for
every i = 1, . . . , n;

2. Starting from player π(1), do successively for i = 1, . . . , n:

2.1 Set xπ(i) to its lower or upper bound depending whether i is
minimal or maximal

2.2 Eliminate player π(i) and update the game by taking the
reduced game over {π(i + 1), . . . , π(n)}.
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The basic idea of min-max vertices

Basic algorithm:

1. Choose some order π on the players such that π(i) is either
minimal or maximal in the poset ({π(i), . . . , π(n)},�) for
every i = 1, . . . , n;

2. Starting from player π(1), do successively for i = 1, . . . , n:

2.1 Set xπ(i) to its lower or upper bound depending whether i is
minimal or maximal

2.2 Eliminate player π(i) and update the game by taking the
reduced game over {π(i + 1), . . . , π(n)}.

The algorithm will end up with a core element if at each step there
exists a core element with coordinate attaining the lower or upper
bound. Hence, the key point of this procedure will be to find valid
bounds for core elements.
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Min-max vertices (1/4)

Say that xS is core extendable w.r.t. (N,�, v) if there exists
z ∈ C (N,�, v) such that zS = xS .
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Min-max vertices (1/4)

Say that xS is core extendable w.r.t. (N,�, v) if there exists
z ∈ C (N,�, v) such that zS = xS .

Lemma
Let (N,�, v) be a game with precedence constraints and i ∈ N.

1. Let n > 2. Then xi ∈ R
{i} is core extendable if and only if

1.1 xi > v({i}) if i is a minimal element of (N ,�),

1.2 xi 6 v(N)− v(N \ {i}) if i is a maximal element of (N ,�), and
1.3 (N \ {i},�, vN\{i},xi ) is balanced.

2. Assume that (N,�, v) is balanced. The set
{xi : x ∈ C (N,�, v)} is convex and bounded

2.1 from below if and only if i is a minimal element of (N ,�);
2.2 from above if and only if i is a maximal element of (N ,�).
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Min-max vertices (2/4)

◮ For any total order π on N, we define

Aπ
i = {π(i), . . . , π(n)} = N \ Bπ

i−1

for i = 1, . . . , n.
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Min-max vertices (2/4)

◮ For any total order π on N, we define

Aπ
i = {π(i), . . . , π(n)} = N \ Bπ

i−1

for i = 1, . . . , n.

◮ A total order π on N is admissible if π(i) is either a minimal
or a maximal element in the poset (Aπ

i ,�) for all i = 1, . . . , n.
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Min-max vertices (2/4)

◮ For any total order π on N, we define

Aπ
i = {π(i), . . . , π(n)} = N \ Bπ

i−1

for i = 1, . . . , n.

◮ A total order π on N is admissible if π(i) is either a minimal
or a maximal element in the poset (Aπ

i ,�) for all i = 1, . . . , n.

◮ A decision vector is any vector in {−1, 1}N . Given an
admissible order π and a decision vector d , (π, d) is a
consistent pair if the following conditions are satisfied for
i = 1, . . . , n:

di = −1 =⇒ π(i) is minimal in the poset (Aπ
i ,�);

di = 1 =⇒ π(i) is maximal in the poset (Aπ
i ,�).
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Min-max vertices (3/4)

Assume (N,�, v) is balanced. For any consistent pair (π, d),
recursively define the vector x = xπ,d,v ∈ R

N as follows:

xπ(i) = max
{

zπ(i)di : z ∈ C (Aπ
i ,�, vAπ

i
,xBπ

i−1
)
}

for all i = 1, . . . , n.
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Min-max vertices (3/4)

Assume (N,�, v) is balanced. For any consistent pair (π, d),
recursively define the vector x = xπ,d,v ∈ R

N as follows:

xπ(i) = max
{

zπ(i)di : z ∈ C (Aπ
i ,�, vAπ

i
,xBπ

i−1
)
}

for all i = 1, . . . , n.

Theorem
Let (N,�, v) be a balanced game, π be an admissible order of N,
and d a decision vector. If (π, d) is consistent, then the vector
xπ,d,v is well-defined, and it is a vertex of C (N,�, v).
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Min-max vertices (3/4)

Assume (N,�, v) is balanced. For any consistent pair (π, d),
recursively define the vector x = xπ,d,v ∈ R

N as follows:

xπ(i) = max
{

zπ(i)di : z ∈ C (Aπ
i ,�, vAπ

i
,xBπ

i−1
)
}

for all i = 1, . . . , n.

Theorem
Let (N,�, v) be a balanced game, π be an admissible order of N,
and d a decision vector. If (π, d) is consistent, then the vector
xπ,d,v is well-defined, and it is a vertex of C (N,�, v).

Remarks:
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Min-max vertices (3/4)

Assume (N,�, v) is balanced. For any consistent pair (π, d),
recursively define the vector x = xπ,d,v ∈ R

N as follows:

xπ(i) = max
{

zπ(i)di : z ∈ C (Aπ
i ,�, vAπ

i
,xBπ

i−1
)
}

for all i = 1, . . . , n.

Theorem
Let (N,�, v) be a balanced game, π be an admissible order of N,
and d a decision vector. If (π, d) is consistent, then the vector
xπ,d,v is well-defined, and it is a vertex of C (N,�, v).

Remarks:

◮ xπ,d,vAπ

i
is a vertex of C (Aπ

i ,�, vAπ

i
,xBπ

i−1
) for any i = 1, . . . , n
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Min-max vertices (3/4)

Assume (N,�, v) is balanced. For any consistent pair (π, d),
recursively define the vector x = xπ,d,v ∈ R

N as follows:

xπ(i) = max
{

zπ(i)di : z ∈ C (Aπ
i ,�, vAπ

i
,xBπ

i−1
)
}

for all i = 1, . . . , n.

Theorem
Let (N,�, v) be a balanced game, π be an admissible order of N,
and d a decision vector. If (π, d) is consistent, then the vector
xπ,d,v is well-defined, and it is a vertex of C (N,�, v).

Remarks:

◮ xπ,d,vAπ

i
is a vertex of C (Aπ

i ,�, vAπ

i
,xBπ

i−1
) for any i = 1, . . . , n

◮ for all i = 1, . . . , n

xπ(i) = max
{

zπ(i)di : z ∈ C (N,�, v), zBπ

i−1
= xBπ

i−1

}
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Min-max vertices (3/4)

Assume (N,�, v) is balanced. For any consistent pair (π, d),
recursively define the vector x = xπ,d,v ∈ R

N as follows:

xπ(i) = max
{

zπ(i)di : z ∈ C (Aπ
i ,�, vAπ

i
,xBπ

i−1
)
}

for all i = 1, . . . , n.

Theorem
Let (N,�, v) be a balanced game, π be an admissible order of N,
and d a decision vector. If (π, d) is consistent, then the vector
xπ,d,v is well-defined, and it is a vertex of C (N,�, v).

Remarks:

◮ xπ,d,vAπ

i
is a vertex of C (Aπ

i ,�, vAπ

i
,xBπ

i−1
) for any i = 1, . . . , n

◮ for all i = 1, . . . , n

xπ(i) = max
{

zπ(i)di : z ∈ C (N,�, v), zBπ

i−1
= xBπ

i−1

}

◮ xπ,d,v with d = (1, 1, . . . , 1) and O(N,�) = 2N was
introduced by Tijs (2005) by the above formula under the
name of leximal.
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Min-max vertices (4/4)

◮ Any vector xπ,d,v where (π, d) is a consistent pair is called a
min-max vertex of C (N,�, v)
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Min-max vertices (4/4)

◮ Any vector xπ,d,v where (π, d) is a consistent pair is called a
min-max vertex of C (N,�, v)

◮ The computation of min-max vertices is possible if one finds
an explicit expression of the bounds. The computation is easy
in two important cases (supermodular games, connected
hierarchies), and yields the intuitive bounds given above
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Min-max vertices (4/4)

◮ Any vector xπ,d,v where (π, d) is a consistent pair is called a
min-max vertex of C (N,�, v)

◮ The computation of min-max vertices is possible if one finds
an explicit expression of the bounds. The computation is easy
in two important cases (supermodular games, connected
hierarchies), and yields the intuitive bounds given above

◮ For any consistent pair (π, d), the induced vector yπ,d,v ∈ R
N

is defined recursively on i = 1, . . . , n with vi = v
Aπ

i
,y

π,d,v

Bπ

i−1

as

follows:

yπ,d,v
π(i) =

{

vi({π(i)}), if di = −1,

vi(A
π
i )− vi(A

π
i+1), if di = 1,

(i = 1, . . . , n).
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Min-max vertices (4/4)

◮ Any vector xπ,d,v where (π, d) is a consistent pair is called a
min-max vertex of C (N,�, v)

◮ The computation of min-max vertices is possible if one finds
an explicit expression of the bounds. The computation is easy
in two important cases (supermodular games, connected
hierarchies), and yields the intuitive bounds given above

◮ For any consistent pair (π, d), the induced vector yπ,d,v ∈ R
N

is defined recursively on i = 1, . . . , n with vi = v
Aπ

i
,y

π,d,v

Bπ

i−1

as

follows:

yπ,d,v
π(i) =

{

vi({π(i)}), if di = −1,

vi(A
π
i )− vi(A

π
i+1), if di = 1,

(i = 1, . . . , n).

◮ Remark: Corresponds to the “intuitive bounds”.
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Min-max vertices (4/4)

◮ Any vector xπ,d,v where (π, d) is a consistent pair is called a
min-max vertex of C (N,�, v)

◮ The computation of min-max vertices is possible if one finds
an explicit expression of the bounds. The computation is easy
in two important cases (supermodular games, connected
hierarchies), and yields the intuitive bounds given above

◮ For any consistent pair (π, d), the induced vector yπ,d,v ∈ R
N

is defined recursively on i = 1, . . . , n with vi = v
Aπ

i
,y

π,d,v

Bπ

i−1

as

follows:

yπ,d,v
π(i) =

{

vi({π(i)}), if di = −1,

vi(A
π
i )− vi(A

π
i+1), if di = 1,

(i = 1, . . . , n).

◮ Remark: Corresponds to the “intuitive bounds”.

◮ Not always a core element! But yπ,d,v is a core element iff
yπ,d,v = xπ,d,v , i.e., it is a min-max vertex.
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The case of supermodular games

◮ One can prove that if (N,�, v) is supermodular, then all
induced vectors are min-max vertices. It follows that the
induced vectors must correspond to marginal vectors w.r.t.
linear extensions.
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The case of supermodular games

◮ One can prove that if (N,�, v) is supermodular, then all
induced vectors are min-max vertices. It follows that the
induced vectors must correspond to marginal vectors w.r.t.
linear extensions.

◮ Consider yπ,d,v an induced vector. The linear order πd of the

corresponding marginal vector mπd
is obtained as follows:
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The case of supermodular games

◮ One can prove that if (N,�, v) is supermodular, then all
induced vectors are min-max vertices. It follows that the
induced vectors must correspond to marginal vectors w.r.t.
linear extensions.

◮ Consider yπ,d,v an induced vector. The linear order πd of the

corresponding marginal vector mπd
is obtained as follows:

1. first order the players π(i) with di = −1 according to π
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The case of supermodular games

◮ One can prove that if (N,�, v) is supermodular, then all
induced vectors are min-max vertices. It follows that the
induced vectors must correspond to marginal vectors w.r.t.
linear extensions.

◮ Consider yπ,d,v an induced vector. The linear order πd of the

corresponding marginal vector mπd
is obtained as follows:

1. first order the players π(i) with di = −1 according to π

2. then order the players π(i) with di = 1 according to the
reverse order.
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The case of supermodular games

◮ One can prove that if (N,�, v) is supermodular, then all
induced vectors are min-max vertices. It follows that the
induced vectors must correspond to marginal vectors w.r.t.
linear extensions.

◮ Consider yπ,d,v an induced vector. The linear order πd of the

corresponding marginal vector mπd
is obtained as follows:

1. first order the players π(i) with di = −1 according to π

2. then order the players π(i) with di = 1 according to the
reverse order.

1

2

3 4

5

Example: A hierarchy with 5 players. Consider π = 13524 and
d = (−1,−1, 1, 1,−1). Then πd = 13425, and the maximal chain

Bπd

0 , . . . ,Bπd

n is ∅, 1, 13, 134, 1234,N .
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The case of connected hierarchies

◮ Important fact: If (N,�) is connected, then every game
(N,�, v) has a nonempty core.
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The case of connected hierarchies

◮ Important fact: If (N,�) is connected, then every game
(N,�, v) has a nonempty core.

◮ It follows from the basic Lemma that if (N \ i ,�) remains
connected, then the intuitive bounds are obtained for xi when
x ∈ C (N,�, v).
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The case of connected hierarchies

◮ Important fact: If (N,�) is connected, then every game
(N,�, v) has a nonempty core.

◮ It follows from the basic Lemma that if (N \ i ,�) remains
connected, then the intuitive bounds are obtained for xi when
x ∈ C (N,�, v).

◮ Call simple an order π such that (Aπ
i ,�) is connected for

i = 1, . . . , n.
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The case of connected hierarchies

◮ Important fact: If (N,�) is connected, then every game
(N,�, v) has a nonempty core.

◮ It follows from the basic Lemma that if (N \ i ,�) remains
connected, then the intuitive bounds are obtained for xi when
x ∈ C (N,�, v).

◮ Call simple an order π such that (Aπ
i ,�) is connected for

i = 1, . . . , n.

We have obtained:

Theorem
Let (N,�, v) be a game with (N,�) a connected hierarchy. Then
for any consistent pair (π, d) where π is a simple order, the
induced vector yπ,d,v is a min-max vertex.
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The case of connected hierarchies

◮ Important fact: If (N,�) is connected, then every game
(N,�, v) has a nonempty core.

◮ It follows from the basic Lemma that if (N \ i ,�) remains
connected, then the intuitive bounds are obtained for xi when
x ∈ C (N,�, v).

◮ Call simple an order π such that (Aπ
i ,�) is connected for

i = 1, . . . , n.

We have obtained:

Theorem
Let (N,�, v) be a game with (N,�) a connected hierarchy. Then
for any consistent pair (π, d) where π is a simple order, the
induced vector yπ,d,v is a min-max vertex.

Lemma
Any poset (N,�) has a total order that is simple and admissible.

M. Grabisch & P. Sudhölter c©2016 On a class of vertices of the core



Example

1

2

3

4
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Example

1

2

3

4

◮ Linear extensions: 1324, 1342, 3124, 3142, 3412
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Example

1

2

3

4

◮ Linear extensions: 1324, 1342, 3124, 3142, 3412
◮ Admissible orders: all
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Example

1

2

3

4

◮ Linear extensions: 1324, 1342, 3124, 3142, 3412
◮ Admissible orders: all
◮ Simple orders: 1234, 1243, 1423, 1432, 4321, 4312, 4123, 4132
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Example

1

2

3

4

◮ Linear extensions: 1324, 1342, 3124, 3142, 3412
◮ Admissible orders: all
◮ Simple orders: 1234, 1243, 1423, 1432, 4321, 4312, 4123, 4132
◮ If v is strictly supermodular, with π = 1234 and

d = (−1, 1,−1, 1), we find:

x1 = v(1)

x2 = v234,x(234)− v234,x(34) = v(N)− v(1)−max(v(34), v(134)− v(1))

= v(N)− v(134)

x3 = v34,x(3) = max(v(3), v(13)− x1, v(123)− x1 − x2)

= max(v(3), v(13)− v(1), v(123)− v(N) + v(134)− v(1))

= v(13)− v(1).

We get x = m1342,v . Order 1243 yields the same vertex.
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The general case

◮ Let (N,�, v) be a game, and R be the partition of N into
connected components

M. Grabisch & P. Sudhölter c©2016 On a class of vertices of the core



The general case

◮ Let (N,�, v) be a game, and R be the partition of N into
connected components

◮ The intermediate game (R, vR) is defined by

vR(T ) = v(
⋃

T ) (T ⊆ R).
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The general case

◮ Let (N,�, v) be a game, and R be the partition of N into
connected components

◮ The intermediate game (R, vR) is defined by

vR(T ) = v(
⋃

T ) (T ⊆ R).

◮ F0: set of feasible coalitions which are not unions of blocks of
R
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The general case

◮ Let (N,�, v) be a game, and R be the partition of N into
connected components

◮ The intermediate game (R, vR) is defined by

vR(T ) = v(
⋃

T ) (T ⊆ R).

◮ F0: set of feasible coalitions which are not unions of blocks of
R

◮ For y ∈ R
R s.t. y(R) = v(N), define the y-core of (N,�, v)

by

Cy (N,�, v) = {x ∈ R
N : x(S) > v(S) ∀S ∈ F0, x(R) = yR ∀R ∈ R}
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The general case

◮ Let (N,�, v) be a game, and R be the partition of N into
connected components

◮ The intermediate game (R, vR) is defined by

vR(T ) = v(
⋃

T ) (T ⊆ R).

◮ F0: set of feasible coalitions which are not unions of blocks of
R

◮ For y ∈ R
R s.t. y(R) = v(N), define the y-core of (N,�, v)

by

Cy (N,�, v) = {x ∈ R
N : x(S) > v(S) ∀S ∈ F0, x(R) = yR ∀R ∈ R}

◮ Fact: Cy (N,�, v) is never empty and coincides with the core
if (N,�) is connected
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The general case

◮ Let (N,�, v) be a game, and R be the partition of N into
connected components

◮ The intermediate game (R, vR) is defined by

vR(T ) = v(
⋃

T ) (T ⊆ R).

◮ F0: set of feasible coalitions which are not unions of blocks of
R

◮ For y ∈ R
R s.t. y(R) = v(N), define the y-core of (N,�, v)

by

Cy (N,�, v) = {x ∈ R
N : x(S) > v(S) ∀S ∈ F0, x(R) = yR ∀R ∈ R}

◮ Fact: Cy (N,�, v) is never empty and coincides with the core
if (N,�) is connected

Theorem
If y is a vertex of C (R, vR) then every min-max vertex of
Cy (N,�, v) is a vertex of C (N,�, v).
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Equivalent consistent pairs

◮ Two consistent pairs (π, d), (π′, d ′) are equivalent if
xπ,d,v = xπ

′,d ′,v for every balanced game (N,�, v).
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Equivalent consistent pairs

◮ Two consistent pairs (π, d), (π′, d ′) are equivalent if
xπ,d,v = xπ

′,d ′,v for every balanced game (N,�, v).

◮ Observe that (π, d) and (π, d ′) where d , d ′ differ only
inasmuch as d ′

n = −dn are equivalent. We say that they differ
by an irrelevant switch.
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Equivalent consistent pairs

◮ Two consistent pairs (π, d), (π′, d ′) are equivalent if
xπ,d,v = xπ

′,d ′,v for every balanced game (N,�, v).

◮ Observe that (π, d) and (π, d ′) where d , d ′ differ only
inasmuch as d ′

n = −dn are equivalent. We say that they differ
by an irrelevant switch.

◮ Two consistent pairs (π, d), (π′, d ′) are neighbors if there
exists k ∈ {1, . . . , n − 1} such that
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Equivalent consistent pairs

◮ Two consistent pairs (π, d), (π′, d ′) are equivalent if
xπ,d,v = xπ

′,d ′,v for every balanced game (N,�, v).

◮ Observe that (π, d) and (π, d ′) where d , d ′ differ only
inasmuch as d ′

n = −dn are equivalent. We say that they differ
by an irrelevant switch.

◮ Two consistent pairs (π, d), (π′, d ′) are neighbors if there
exists k ∈ {1, . . . , n − 1} such that

1. π(i) = π′(i) and di = d ′
i for all i ∈ {1, . . . , n} \ {k , k + 1},
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Equivalent consistent pairs

◮ Two consistent pairs (π, d), (π′, d ′) are equivalent if
xπ,d,v = xπ

′,d ′,v for every balanced game (N,�, v).

◮ Observe that (π, d) and (π, d ′) where d , d ′ differ only
inasmuch as d ′

n = −dn are equivalent. We say that they differ
by an irrelevant switch.

◮ Two consistent pairs (π, d), (π′, d ′) are neighbors if there
exists k ∈ {1, . . . , n − 1} such that

1. π(i) = π′(i) and di = d ′
i for all i ∈ {1, . . . , n} \ {k , k + 1},

2. π(k) = π′(k + 1) and dk = d ′
k+1 = −dk+1 = −d ′

k , and
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Equivalent consistent pairs

◮ Two consistent pairs (π, d), (π′, d ′) are equivalent if
xπ,d,v = xπ

′,d ′,v for every balanced game (N,�, v).

◮ Observe that (π, d) and (π, d ′) where d , d ′ differ only
inasmuch as d ′

n = −dn are equivalent. We say that they differ
by an irrelevant switch.

◮ Two consistent pairs (π, d), (π′, d ′) are neighbors if there
exists k ∈ {1, . . . , n − 1} such that

1. π(i) = π′(i) and di = d ′
i for all i ∈ {1, . . . , n} \ {k , k + 1},

2. π(k) = π′(k + 1) and dk = d ′
k+1 = −dk+1 = −d ′

k , and
3. (Aπ

k+2,�) is connected (where Aπ

n+1 = ∅ and ∅ is assumed to
be connected).
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Equivalent consistent pairs

Theorem
Let (N,�) be a poset and (π, d) and (π′, d ′) be consistent pairs.
Then the following statements are equivalent:

1. The pairs (π, d) and (π′, d ′) are equivalent.

2. There is a sequence (π1, d1), . . . , (πt , d t) of consistent pairs
such that (π1, d1) = (π, d), (πt , d t) = (π′, d ′), and for any
ℓ ∈ {1, . . . , t − 1}, either (πℓ, d ℓ) and (πℓ+1, d ℓ+1) are
neighbors or they only differ by an irrelevant switch.
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Limits of the min-max approach

Example

◮ Let N = {1, . . . , 5}, S = {{1, 2, 3}, {2, 3}, {2, 4}, {3, 4},N},
and let (N,�) be a poset that such that S ⊆ O(N,�).
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Limits of the min-max approach

Example

◮ Let N = {1, . . . , 5}, S = {{1, 2, 3}, {2, 3}, {2, 4}, {3, 4},N},
and let (N,�) be a poset that such that S ⊆ O(N,�).

◮ Let (N,�, v) be a game that satisfies v(S) = 0 for all
S ∈ S ∪ {∅} and v(T ) ≤ −3 for all T ∈ O(N,�) \ (S ∪ {∅}).
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Limits of the min-max approach

Example

◮ Let N = {1, . . . , 5}, S = {{1, 2, 3}, {2, 3}, {2, 4}, {3, 4},N},
and let (N,�) be a poset that such that S ⊆ O(N,�).

◮ Let (N,�, v) be a game that satisfies v(S) = 0 for all
S ∈ S ∪ {∅} and v(T ) ≤ −3 for all T ∈ O(N,�) \ (S ∪ {∅}).

◮ x = (0, 0, 0, 0, 0) is a core element. Since x(S) = v(S) for all
S ∈ S, x is a vertex of the core.
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Limits of the min-max approach

◮ Consider the following core elements:

z1 = (1,−1, 1, 1,−2)

z2 = (0, 1,−1, 1,−1)

z3 = (−2, 1, 1,−1, 1)
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Limits of the min-max approach

◮ Consider the following core elements:

z1 = (1,−1, 1, 1,−2)

z2 = (0, 1,−1, 1,−1)

z3 = (−2, 1, 1,−1, 1)

◮ They satisfy

z31 < x1 < z11

z12 < x2 < z22

z23 < x3 < z13

z34 < x4 < z14

z15 < x5 < z35 ,
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Limits of the min-max approach

◮ Consider the following core elements:

z1 = (1,−1, 1, 1,−2)

z2 = (0, 1,−1, 1,−1)

z3 = (−2, 1, 1,−1, 1)

◮ They satisfy

z31 < x1 < z11

z12 < x2 < z22

z23 < x3 < z13

z34 < x4 < z14

z15 < x5 < z35 ,

◮ Hence x can never be attained by coordinatewise
minimization/maximization over the core.
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Limits of the min-max approach

Theorem
For any balanced game (N,�, v), every vertex of the core is a
min-max vertex if and only if n 6 4.
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