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Abstract 
 

 

The paper studies a class of experience good models in a new way. We focus on signaling 

games close to Akerlof’s market for lemons, in which a seller sells a good to a buyer, who 

ignores the quality of the good during the transaction. In this context, we first establish some  

properties of the mixed Perfect Bayesian Equilibria. Then we turn to the concept of best-

reply matching (BRM) developed by Droste, Kosfeld & Voorneveld (2002, 2003) for games 

in normal form. BRM equilibria respect a consistency which is different from the Nash 

equilibrium one: in a BRM equilibrium, the probability assigned by a player to a pure 

strategy is linked to the number of times the opponents play the strategies to which this pure 

strategy is a best reply. We extend this logic to signaling games in extensive form and apply 

the new obtained concept to our experience good models.  This new concept leads to a very 

simple rule of behavior, which is consistent, different from the Perfect Bayesian Equilibrium 

behavior, different from Akerlof’s result, and can be socially efficient.  
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1. Introduction 

 

The paper studies experience good models in a new way, by applying the concept of best 

reply matching developed by Droste, Kosfeld & Voorneveld (2002,2003). The signaling 

games under study are close to Akerlof’s market for lemons, in which a seller sells a good to 

a buyer, who ignores the quality during the transaction. In section 2 we look for the 

characteristics of the mixed Perfect Bayesian Equilibria (PBE). We namely focus on the fact 

that no type of seller can play more than three prices in a PBE in which the seller earns a 

positive payoff regardless of the sold quality. This characteristic eliminates simple rules of 

behavior which respect a limited rationality. That is why we turn, in section 3, to the Best-

Reply Matching (BRM) concept developed by Droste, Kosfeld and Voorneveld (2002, 

2003). A BRM equilibrium respects a consistency which is different from the Nash 

equilibrium one. In a few words, Droste & al.(2003) and Kosfeld & al. (2002) pursue the 

notion of rationalizability earlier developed by Bernheim (1984) and Pearce (1984): in a 

BRM equilibrium, the probability that a player assigns to a pure strategy is linked to the 

number of times the opponents play the strategies to which this pure strategy is a best reply. 

Droste & al.’s concept is developed for normal form games. Therefore, in section 4, given 

that we are studying signaling games, we modify the definition of BRM in order to take into 

account the decentralized decision process allowed by the extensive form game approach. 

We explain why the two versions of the concept differ. In section 5 we apply Droste & al.’s 

normal form concept to some games close to Akerlof’s market for lemons. In section 6 we 

apply our extensive form concept (called local BRM equilibrium) to the same games and 

compare the obtained results. In section 7 we generalize the results obtained in section 6. We 

study a model with n prices p1…pn, such that the seller whose good is of quality  ti  can only 

earn a positive payoff by selling the good at prices pj, with j higher or equal than i. In this 

model the local BRM equilibrium is a very easy profile of strategies: each quality ti is sold at 

each price pj, with j higher or equal than i, with a same probability, and the consumer accepts 

each price with the probability 1 divided by the number of qualities possibly sold at this 

price. This behavior, which is far from a PBE behavior, is not only consistent with the BRM 

logic, but it respects common sense. Therefore it is easy to learn and to adopt. Moreover we 

show in section 8 that it can lead to a social surplus that is higher than the one obtained with 

Perfect Bayesian Equilibria. Section 9 extends the BRM concepts by allowing a more 
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diversified behavior in case of indifference; we establish the link between the new concepts 

and the Nash equilibria. Section 10 concludes on further developments. It namely comes 

back to Akerlof’s result and establishes the existence of BRM equilibria. 

 

 

2. Akerlof’s market for lemons, Perfect Bayesian Equilibria and limited rationality 

 

The studied context is an experience good model close to Akerlof’s context. So the studied 

game is a signaling game with a seller and a buyer. The seller wants to sell a car to the buyer. 

The car can be of different qualities. We introduce a finite number of qualities ti, with i from 

1 to n, and ti<ti+1 for i from 1 to n-1. The seller's reservation price for a good of quality ti is 

hi, i from 1 to n, with hi<hi+1 for i from 1 to n-1. The seller sets a price for her good. The 

buyer observes the price and accepts or refuses the transaction. The buyer's reservation price 

for a good of quality ti is Hi, i from 1 to n, with Hi<Hi+1 for i from 1 to n-1. The buyer 

ignores the quality during the transaction, but has a prior probability distribution over the 

qualities, that is common knowledge of both players; the probability distribution assigns 

probability ρi to the quality ti, with 0< ρi <1 for i from 1 to n and �ρ
=

n

1i
i =1. It is assumed that 

Hi > hi for any i from 1 to n, in order to make profitable trade for both players possible. We 

also introduce the assumption: 

�

�

=

=

ρ

ρ

j

1i
i

j

1i
iiH

< hj      for j from 2 to n       (a)  

and even the more restrictive assumption: 

for any j from 2 to n,   

�

�

=

=

αρ

αρ

j

1i
ii

j

1i
iii H

< hj      where αi, for i from 1 to n, is equal to 1 or 0,  

except for the case αj=1and αi=0 for i from 1 to j-1.    (b) 
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Assumption (a) is the heart assumption of Akerlof's comment (see below). Assumption (b) 

namely ensures that Hi<hi+1<Hi+1 for any i from 1 to n-1. It also ensures that, if each type of 

seller plays a unique price, this price being higher or equal to her reservation price, then the 

consumer is better off accepting a price p with hj<p<Hj  if and only if only tj plays p. 

The symbolic representation of the studied experience good model (with two qualities) is 

given in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Legend of figure 1: A and R mean that the consumer accepts (A) or refuses (R) the trade. 
The first, respectively the second coordinate of each vector of payoffs, is the seller's, 
respectively the consumer's payoff. 
 

Let us recall that in this game Akerlof’s comment goes as follows: 

If trade occurs, the car is sold at a unique price, regardless of its quality, because any type 

of seller wants to sell her car at the highest price. So imagine that the observed price is p, 

with hj ≤p<hj+1,  j higher or equal to 2. Only qualities lower or equal to tj can be sold at price 

p. It follows that the expected quality of the sold car is 
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consumer accepts to pay is 

�

�

=

=

ρ

ρ

j
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i

j

1i
iiH

. Yet this price, by assumption (a), is lower than hj and 

therefore lower than p. So trade will not occur at price p. As a consequence, trade can only 

occur at a price p lower than h2. This price is necessarily assigned to the quality t1 and will 

be accepted, provided it is lower or equal to H1. Therefore the worst quality throws all the 

other qualities out of the market. 

 

Yet Akerlof’s reasoning is a pure strategy reasoning. As soon as one switches to mixed 

strategies, trade does not necessarily occur at a unique price. Many prices can coexist on 

the market and this coexistence allows all qualities to be sold on the market, even in a 

context that satisfies assumption (b). 

Let us give more insights into the Perfect Bayesian Equilibria of the studied signaling game. 

Throughout the paper we use the following notations: πi(pj) is the probability that the seller 

of type ti (i.e. whose quality is ti)  plays pj ; q(pj) is the probability that the consumer accepts 

the price pj. 

Proposition 1: existence of PBE 

The studied experience good model has a huge number of PBE.  

For example, there exists an infinite number of mixed strategies PBE, in which the seller of 

type ti plays the prices pi *  and pi+1*,  respectively with probabilities 1-πi(pi+1*) and πi(pi+1*), 

with i from 1 to n-1; tn plays the price pn* with probability 1.  

p1*=H1 ;   hi <pi*<Hi  for i from 2 to n (and therefore pi*< pi+1* for i from 1 to n-1). 

The buyer accepts p1* with probability 1 and accepts each price pi*, i from 2 to n, with 

probability q(pi*). 

πi(pi+1*) , i from 1 to n-1, and q(pi*), i from 1 to n, are defined by: 

πi(pi+1*) = ρi+1 πi+1(pi+1*) (Hi+1-pi+1*)/  [ρi (pi+1* - Hi)]           (1) 

q(p1*)=1  

q(pi*)= (pi-1*-hi-1)q(pi-1*)/(pi*-hi-1).         (2) 

The buyer assigns each price p different from the equilibrium prices, with Hi-1≤ p< Hi , to ti-2, 

for i from 3 to n, and each price p, with p<H2 , to t1. Hence he refuses the trade at each non 

equilibrium price higher than H1. He accepts all the out of equilibrium prices lower than H1. 
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Proof: see appendix 1 

 

Given that both pi* and pi+1* are higher than hi for i from 1 to n-1 and that pn is higher than 

hn, proposition 1 ensures that, as soon as the players are allowed to play mixed strategies, 

trade can occur with positive probabilities at different prices and the seller’s payoff can be 

positive at a PBE regardless of the quality of her good (for more precisions on these 

equilibria see Umbhauer 2007). 

 

The PBE of the studied experience good model share some properties which are given in 

proposition 2.  

Proposition 2 

In every PBE in which each type of seller gets a positive payoff:  

 - each type of seller plays at most 3 prices with a positive probability;  

- if ti plays 3 prices p, p', and p", with p<p'<p", then p'=Hi;  

- if ti plays a price p different from Hi, then p is also played with  positive probability by the 

adjacent type ti-1 or  ti+1;   

- at most 2n-1 different prices are played in a PBE path; 

- the buyer's payoff is null. 

In every PBE the buyer's payoff is null. 

 

Proof: see appendix 2 

 

The property we focus on is the fact that each type ti can at most play two prices different 

from Hi. Let us illustrate the consequence of this fact on the following simplified experience 

good model:   

There are 3 types of quality, t1, t2 and t3 , with t1<t2<t3 and only 3 possible prices, p1, p2 and 

p3, with h1< p1 < H1 < h2 < p2 <H2 < h3 < p3 < H3. We suppose that the game satisfies 

assumption (b), that no player plays a weakly dominated strategy, hence that no type of 

seller plays a price lower than her reservation price and that the consumer always accepts p1. 

It follows that the studied game is given in figure 2. 
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A PBE of this game can, for example, lead t1 (i.e. the seller of type t1) to play p1 and p2 

(unfilled arrows), t2 to play p2 and p3 (unfilled arrows), t3 to play p3 (unfilled arrow), and 

lead the consumer to accept p1 (full arrow), and to accept and refuse p2 and p3  with positive 

probability (full arrows). It is impossible to find a PBE in which each type of seller earns a 

positive payoff, t1 plays the three prices p1, p2, p3, t2 plays the two prices p2 and p3 and t3 

plays p3 (full arrows), because t1 can at most play 2 prices different from H1. A fortiori it is 

impossible to construct a PBE (with positive payoff for each type of seller) in which t1 plays 

each of the three prices p1, p2 and p3 with the same probability 1/3, t2 plays each of the two 

prices p2, p3 with probability ½, t3 plays p3 with probability 1, the consumer accepts p1 with 

probability 1, p2 with probability ½ and p3 with probability 1/3 (cf. figure 2). 

 

Yet this easy profile of strategies is not silly; it satisfies a limited rationality. As a matter of 

fact it is not silly for t1 to play all the three prices with the same probability. Indeed, by 
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comparing p1 and p3, she observes that it is more interesting to play p3 when p3 is accepted, 

which encourages her to put a higher probability on p3 than on p1; but she also knows that 

the consumer is more incited to refuse p3 than p1, which discourages her to put a higher 

probability on p3 than on p1. So, all in all, it is not silly to play both prices with the same 

probability. Given that she can make a similar reasoning by comparing p1 and p2 and p2 and 

p3, it not silly to finally assign the same probability 1/3 to each of the three prices. And of 

course a similar reasoning can lead her to assign the same probability ½ to p2 and p3 when 

she is of type t2. The consumer’s behavior also finds an easy justification. He prefers 

accepting p2 when it is played by t2, but he prefers refusing it when it is played by t1; hence, 

given that only one of two configurations encourages him to buy the good, he buys it with 

probability ½. Similarly, the consumer prefers accepting p3 if it is played by t3, but prefers 

refusing it if it is played by t1 and if it is played by t2; hence, given that only one of three 

configurations encourages him to buy the good, he buys it with probability 1/3.  

It derives that this easy behavior satisfies limited rationality even if, of course, it does not 

respect Bayesian rationality. This easy behavior has another advantage. It can easily be 

generalized to a higher number of types and prices. So it can become an applied rule of 

behavior, because it is easy to learn and therefore to adopt, regardless of the number of 

prices and types. 

What is more, this simple rule of behavior respects a strong consistency, the best-reply 

matching one, to which we turn in the following sections. 

 

 

3. Best-reply matching in a signaling game: the normal form approach 

 

Droste, Kosfeld and Voorneveld introduced the concept of BRM equilibria in normal form 

games. Their definition is recalled hereby: 

Definition 1 (Kosfeld & al. 2002): Normal form BRM matching equilibrium 

 Let G=(N, (Si)i∈N, ( i� )i∈N) be a game. A mixed strategy p is a (normal form) BRM 

equilibrium if for every player i ∈ N and for every pure strategy si∈Si, : 

pi(si)= �
−∈− −)is(1
iBis ii )s(BCard

1
p-i(s-i) 
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In a BRM equilibrium, the probability assigned to a pure strategy is linked to the number of 

times the opponents play the strategies to which this pure strategy is a best reply. So, if 

player i' s opponents play s-i with probability  p-i(s-i), and if the set of player i's best responses 

to s-i is the subset of pure strategies Bi(s-i), then each strategy of this subset is played with the 

probability p-i(s-i) divided by the cardinal of Bi(s-i).  

This concept carries on the concept of rationalizability developed by Bernheim (1984) and 

Pearce (1984), according to which a strategy si is rationalizable if there exists a pure strategy 

profile s-i played by the opponents to which si is a best response. Droste, Kosfeld and 

Voorneveld go further: they observe that, if the opponents often play s-i, then si often 

becomes the best response, and therefore they argue that it is rational (rationalizable) for 

player i to often play si . More precisely, Droste & al require that, if s-i is played with 

probability p-i, si should be played with the same probability (if si is the only best reply to    

s-i). Given that the same condition is checked for each pure strategy, each player’s 

probability distribution (on pure strategies) is justified by the opponents’ probability 

distributions, which ensures a strong behavior consistency.   

This consistency is very different from the consistency of the Nash equilibrium concept, 

albeit the intersection between both concepts is not empty2. To see why, look at the signaling 

game given in figure 3.  

 

 

 

 

 

 

 

 

 

 

 

                                                           
2 Especially each strong Nash equilibrium is a BRM equilibrium. In fact, in a strong Nash equilibrium s*, each 
strategy si* is played with probability 1 and constitutes the unique best reply to the strategies of the other 
players. So according to the BRM logic, each strategy si* has to be played with the probability assigned to s-i*, 
i.e. 1, which ensures that s* is also a BRM equilibrium (see also section 9 for more intersection).   
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The only PBE, and also the only Nash equilibria, of the game in figure 3 are such that player 

1 always plays m1 regardless of type and player 2 assigns to r1 a probability between 0.6 and 

2/3. It follows that the unique PBE outcome is the couple (2,2). 

The normal form of the game is given by matrix 1. One observes in this matrix –but also 

directly on the extensive form of the game- that player 1 is best off playing m1/t1m2/t2 each 

time player 2 plays r1 and that she is best off playing m2/t1m1/t2 each time player 2 plays r2. 

Hence the BRM consistency requires that player 1 plays m1/t1m2/t2 as often as player 2 plays 

r1, i.e. that she assigns to m1/t1m2/t2 a probability p2 equal to the probability q that player 2 

assigns to r1; in the same way she has to assign to m2/t1m1/t2 a probability p3 equal to the 

probability 1-q that player 2 assigns to r2. 

 

  2     

  r1 r2  q 1-q 

 m1/t1 m1/t2 (2 ,  2) (2 , 2) p1 B2 B2 

1 m1/t1 m2/t2 (2.5,1) (1,4) p2 b1 B2 

 m2/t1 m1/t2 (1 , 5) (3.5,1) p3 B2 b1 

 m2/t1 m2/t2 (1.5,4) (2.5,3) p4 B2  

                                            Matrix 1      Table 1 

m1/t1m1/t2 and  m2/t1m2/t2 are never best replies to any pure strategy of player 2. It follows 

that p1 and p4, the probabilities assigned to these strategies, are equal to 0.  

Player 2’s best response is r1 each time player 1 plays m2/t1m1/t2  or m2/t1m2/t2. It is one of 

the two best responses when player 1 plays m1/t1m1/t2 (because in this case r1 and r2 are best 

responses). It follows that q has to be equal to p3+p4+p1/2. Finally r2 is player 2’s best 

response each time player 1 plays m1/t1m2/t2 ; it is one of the two best responses when player 

1 plays m1/t1m1/t2 . It follows that 1-q has to be equal to p2+p1/2.    

Table 1 summarizes this information. It namely tells when a strategy is a best reply:  b1 

means that player 1’s strategy is a best reply to player 2’s strategy, B2 means that player 2’s  

strategy is a best reply to player 1’s strategy. 

We get the system of equations: 

p2 =q  

p3 =1-q 
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p1=p4= 0  

q=  p3+p4+p1/2 

The unique solution of this system is p2= p3= q= 1-q= 0.5, p1=p4=0.  

Hence, in the BRM equilibrium, player 1 plays m1/t1m2/t2 half of time and m2/t1m1/t2 half of 

time and player 2 plays r1 half of time and r2 half of time.  

This solution is very far from the Nash equilibrium solution. Let us explain the reason for 

this difference. The above BRM equilibrium is not a Nash equilibrium because in a Nash 

equilibrium, a player reacts to the mean behavior of the opponents. So, according to Nash’s 

logic, if player 2 plays r1 half of time and r2 half of time, player 1 plays m2/t1m1/t2 with 

probability 1. By contrast, according to the BRM logic, player 1 takes into account that half 

of time, player 2 plays r1 with probability 1, in which case the best response is m1/t1m2/t2, 

and the other half of time, player 2 plays r2 with probability 1, in which case the best 

response is m2/t1m1/t2; it follows that half of time her optimal behavior is m1/t1m2/t2 and half 

of time it is m2/t1m1/t2. 

Let us also insist on the fact that the probabilities in the BRM equilibrium have nothing to do 

with the probabilities of a mixed Nash equilibrium. In a BRM equilibrium a player i assigns 

a high probability to a pure strategy si if it is often a best reply (i.e. if the opponents often 

play the strategy profile to which si is a best reply). By contrast, in a mixed Nash 

equilibrium, the probability a player i assigns to si has nothing to do with the frequency with 

which si is a best reply: indeed, when she plays two strategies si and si’ with positive 

probability, she is indifferent between both strategies and could assign any probability 

(summing to 1) to si and si’ : in fact, the only role of the probability assigned to si is to justify 

the strategies of the opponents of  player i.   

Let us finally observe that, in this game, the BRM equilibrium ensures a mean payoff  

2/2+5/4 >2 to t1, a mean payoff of 2/2 +3/4 <2 to t2 (hence a mean payoff 2 to player 1) and 

a payoff 11/4 >2 to player 2. It follows that, in this game, player 1 gets the same expected 

payoff in both the BRM equilibrium and the (PBE) Nash equilibria and player 2 gets a 

higher payoff in the BRM equilibrium than in the (PBE) Nash equilibria. This fact does not 

prove that in general BRM equilibria lead to higher payoffs, it just illustrates that both 

concepts are highly different and can therefore lead to completely different issues and 

payoffs. 
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4. Best-reply matching in a signaling game: the local approach 

 

We propose in this section to apply the BRM logic in a more extensive form –decentralized- 

way. We know justify the play of each action at each information set. To this aim we study 

the game of figure 3 with local strategies. So we again call q the probability assigned by 

player 2 to r1 but we call π1, respectively π2, the probability assigned by t1 to m2 and the 

probability assigned by t2 to m2. 

One observes that t1 is best off playing m2 each time player 2 plays r2, which leads her to 

play m2 as often as player 2 plays r2,  hence π1=1-q. t2 is best off playing m2 each time player 

2 plays r1, which leads her to play m2 as often as player 2 plays r1, hence π2=q . Reciprocally, 

player 2 is best off playing r1 if t1 plays m2 and t2 plays m1 or if t1 plays m2 and t2 plays m2. r1 

is one of the two best responses if t1 plays m1 and t2 plays m1. It follows that q= π1(1-π2)+ 

π1π2+ (1-π1)(1-π2)/2. Finally player 2 is best off playing r2 each time t1 plays m1 and t2 plays 

m2. r2 is one of the two best responses if t1 plays m1 and t2 plays m1. It follows that 1-q=    

(1-π1)π2+ (1-π1)(1-π2)/2.  

Hence we get the system of equations  

π1=1-q 

π2=q 

q= π1(1-π2)+ π1π2+ (1-π1)(1-π2)/2 

The unique solution of this system is: π1=0.44, π2=0.56, q=0.56. 

 

Before commenting this result, let us give the definition of the local BRM equilibrium in  

signaling games, we applied in the above example. 

 

Definition 2: Local BRM equilibrium in signaling games 

 Let G be a finite signaling game in extensive form. Player 1 can be of n types ti, i from 1 to 

n, and chooses a message in a finite set M(ti). M= �
n

1i
i )t(M

=
.  Player 2 observes each message 

m and responds with an action r out of R(m), the finite set of actions available at message m. 

itπ (m) is the probability assigned by ti to message m and )r(
km2π  is the probability 



 13

assigned by player 2 to the response r after having observed mk. A behavioral strategy profile 

is a local BRM equilibrium if: 

-for every type ti of player 1, and every message m available to type ti, 

itπ (m)= �
−∈ )m(Br t1
it

i
)r(BCard

1
( ))r(

jj m

MCard

1j
m2∏

=
π  

where r = )r,...r,r(
MCard2 mm1m is a profile of actions played by player 2 (one response for 

each possible message), and itB (r) is the set of best responses of type ti to the profile r. 

- after each message mk, for every action r available after mk: 

)r(
km2π = �

−∈ )r(Bm m21
km2 k

)m(BCard
1

( ∏
=

π
n

1i
tt ))m(
ii

 

where m= )m,...,m,m(
n21 ttt  is the profile of messages sent by the n types of player 1 and 

)m(B
km2 is the subset of player 2's best responses to the profile m after observing mk. 

 

Let us now comment the difference between the normal form and the local approach of 

BRM. In the game of figure 3, the normal form approach led to q=0.5 and p1=p4=0, 

p2=p3=0.5.The Kuhn equivalent behavioral strategies are given by π1=0.5, π2=0.5 and q=0.5. 

It follows that the local BRM equilibrium,  π1=0.44, π2=0.56 and q=0.56, albeit nor far from 

the normal form BRM equilibrium, is different. It follows: 

Proposition 2 

The local BRM equilibria and the normal form BRM equilibria do not necessarily lead to the 

same issues. 

 

The reason for this difference can be understood by looking at the four configurations given 

in figures 3a, 3b, 3c and 3d. 

The configurations given in figures 3a and 3d, respectively in figures 3b and 3c, occur with 

probability 0 (p1=p4=0), respectively 0.5 (p2=p3=0.5) in the normal form approach, whereas 

they all occur with a probability close to 0.25 in the local approach. To understand this 

difference, look at the configuration given in figure 3d, in which both t1 and t2 play m2. This 

configuration is impossible in the normal approach (p4=0) because there exists no pure 
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strategy of player 2 such that both t1 and t2 are best off playing m2. By contrast, this 

configuration makes sense in the local decentralized approach. As a matter of fact t1 rigthly 

plays m2 with probability 0.44 because player 2 plays r2 with the same probability. And t2 

rightly plays m2 with probability 0.56 because player 2 plays r1 with the same probability. So 

it automatically follows that the event “both t1 and t2 play m2” is observed with probability 

0.44x0.56, which is far from 0. 

 
In fact, the normal form links the actions taken at each decision node of player 1 and 

therefore looks for actions by player 2 that justify a profile of decisions of player 1. Hence, 

in the normal form -centralized- approach, the actions played at x1 and x2 have to be justified 

by the same player 2’s action. By contrast, in the local, decentralized approach, the action 

played by t1 is justified by a player 2’s action r and the action played by t2 is justified by a 

player 2’s action r’, and r’ can be different from r. To our mind this latter fact is not 

problematic in a BRM context. The BRM logic nowhere requires that an action and the 

actions that justify it have to be played at the same moment. Hence t1 and t2 can both play m2 

(with probability 0.44 and 0.56) despite player 2 will not play r2 and r1 at the same moment, 

because player 2 will actually select both actions with probability 0.44 and 0.56. To our 

point of view, his fact advocates for the local BRM approach. 

In the following sections we will apply both approaches of BRM to the experience good 

model.  

 

5. Normal form best-reply matching in experience good models 

 

Let us first consider the simplified model that satisfies assumption (b), with 2 types, t1, t2, 

and only two possible prices, p1 and p2, with h1< p1 < H1 < h2 < p2 <H2. Let us also suppose 
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that no player plays a weakly dominated strategy, so that t2 only plays p2 and the consumer  

always accepts p1.  The studied game is given in figure 4.3  

The normal form approach leads to the best reply table 2, where pi, i from 1 to 2, are the 

probabilities that the seller assigns to her pure strategies and qi, i from 1 to 2, are the 

probabilities that the consumer assigns to his pure strategies. 

 

 

 

 

 

 

 

 

 

 

  q1 q2 

  A/p1A/p2 A/p1R/p2 

p1 p1/t1p2/t2 B2 b1  
p2 p2/t1p2/t2 b1   B2 

Table 2 

The system of equations becomes: 

p1= q2    p2 =q1      q1=p1     q2=p2. 

Therefore p1= p2=q1 =q2= ½ .  

We recall that πi(pj) is the probability that a seller of type ti plays pj and q(pj) is the 

probability that the consumer accepts pj. The Kuhn behavioral equivalent strategies of the 

above strategy profile become: 

π1(p1) = p1=0.5,   π1(p2) = p2=0.5,     π2(p2) = 1   

q(p1) = 1,  q(p2) = q1= 0.5. 

Hence t1 plays both prices with probability ½  and the consumer accepts the high price with 

probability ½. 

                                                           
3 Working with the weakly dominated strategies changes the numerical values of the probabilities but not the 
nature of the results (see Umbhauer 2007 for the approach with weakly dominated strategies). 

consumer 

t2  1-ρ1 

t1  ρ1 (0 , 0) 
R 

(0 , 0) 

  seller 

A 

R 

Nature 

A   seller     p1  

(p2-h1 , H1-p2) A 

p2 

   p2 

consumer 

(p2-h2 , H2-p2) 

(p1-h1 , H1-p1) 

Figure 4 
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Let us now consider the simplified model that satisfies assumption (b), with 3 types, t1, t2 

and t3 and only 3 possible prices, p1, p2 and p3, with h1< p1 < H1 < h2 < p2 <H2 < h3 < p3 < H3 

Let us again suppose that no player plays a weakly dominated strategy, so that no type of 

seller plays a price lower than her reservation price and so that the consumer always accepts 

p1. It follows that the studied game is given in figure 3 (without the arrows and the 

probabilities on the arrows).The best-reply table becomes table 3. 

 

  q1 q2 q3 q4 

  A/p1A/p2A/p3 A/p1A/p2R/p3 A/p1R/p2A/p3 A/p1R/p2R/p3 

p1 p1/t1p2/t2 p3/t3 B2   b1 

p2 p1/t1p3/t2 p3/t3   B2  b1 B2 

p3 p2/t1p2/t2 p3/t3  b1 B2  

p4 p2/t1p3/t2 p3/t3    B2 

p5 p3/t1p2/t2 p3/t3  B2   

p6 p3/t1p3/t2 p3/t3  b1 B2 b1 B2 

Table 3 

The system of equations is given by: 

p1= p2= q4/2,    p3=q2,    p4=p5=0,    p6=q1+q3 

q1=p1, q2=p2/2+p5+p6/2,   q3=p3,  q4= p2/2+p4+p6/2 

 It follows that    p1=p2=1/7, p3=2/7,  p4=p5=0,  p6=3/7,  q1= 1/7, q2=q3= q4= 2/7.  

The Kuhn equivalent behavioral strategies are: 

π1(p1) = 2/7, π1(p2) = 2/7, π1(p3) = 3/7 

π2(p2) = 3/7,  π2(p3) = 4/7,  π3(p3) = 1 

q(p1)= 1,  q(p2)= 3/7,  q(p3)= 3/7. 

 It immediately follows: 

Proposition 3  

The BRM equilibrium and the PBE (see proposition 2) are different. The main difference is 

that t1 does not only play p1 and p2, but she also plays p3 with a significant probability. 

This difference is linked to another one. In a PBE, the probability of accepting a price strictly 

decreases in the price. This fact is no longer true with the BRM concept (q(p2)=q(p3)). More 

generally, in a model with n types of seller, each type ti, i from 1 to n, in a normal form BRM 
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equilibrium, plays each price pj, j from i to n, with a positive probability (a fact which is 

impossible in any PBE with a positive payoff for the seller cf. proposition 2).  

 

Proof: see Appendix 3 

 

6.  Local best-reply matching in experience good models 

 

We now study the same models than in section 4, but with the local BRM concept. In the 

first model (given in figure 4), one immediately obtains: 

π1(p1)= 1-q(p2) and  π1(p2)= q(p2)        

given that t1's best response is p2 each time the consumer accepts p2, and p1 in the remaining 

case. 

π2(p2)= 1 

q(p1)= 1 

q(p2) = 1-π1(p2)    given that player 2's best response when he observes p2 is to accept p2 if 

and only if t1 plays p1. 

It immediately follows that: 

π1(p1)= π1(p2)= ½, π2(p2)= 1, q(p1)=1 and q(p2)=1/2. 

Hence, in the two type game, we get exactly the same result regardless of the employed 

BRM concept. 

 

Unfortunately, this equality of results does not generalize. 

Indeed, in the second model (given in figure 3), one obtains: 

π1(p3)=q(p3)  

π1(p2)= (1-q(p3))q(p2)  

given that t1's best response is p3 each time the consumer accepts p3 and it is p2 each time the 

consumer refuses p3 but accepts p2. With the remaining probability (not written here) t1 plays 

p1. 

π2(p3)= q(p3) + (1-q(p3))(1-q(p2))/2 

given that t2's best reply is to play p3 each time p3 is accepted and also each time both p3 and 

p2 are refused. In the latter case, both p2 and p3 are best replies, which explains the division 

by 2. t2 plays p2 with the remaining probability (not written here). 
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π3(p3)= 1 

q(p1)= 1  

q(p2)= (1- π1(p2)) π2(p2)+(1-π1(p2))(1-π2(p2))/2       

because accepting p2 is optimal if only t2 plays p2 or if neither t1 nor t2 play p2. In the latter 

case, player 2 can also refuses p2, which explains the division by 2. The consumer refuses p2 

with the remaining probability. 

q(p3)= (1-π1(p3))(1-π2(p3))   

because accepting p3 is optimal only if t1 and t2 do not play p3.  The consumer rejects p3 with 

the remaining probability. 

Solving the system of equations leads to: 

π1(p1)= π1(p2)=π1(p3)=1/3,   π2(p2)= π2(p3)=1/2,  π3(p3)=1, q(p1)=1, q(p2)=1/2 and q(p3)=1/3. 

 

Let us comment this result.  

First, even if the seller's behavior is not far from the one in the normal form game (2/7, 2/7, 

3/7 become 1/3,1/3,1/3 and 3/7 becomes ½), the results obtained in the extensive form are 

different from the ones obtained in the normal form. This difference clearly derives from the 

decentralization which is possible in the extensive form and impossible in the normal form.  

Second, the obtained result is worth of interest in that the obtained behaviors are quite 

simple: t1 can play 3 prices and plays each of them with probability 1/3, t2 can play 2 prices 

and plays each of them with probability ½, t3 can only play one price and of course plays it 

with probability 1; the buyer accepts p1 –which can only be played by t1- with probability 1, 

he accepts p2- which can be played by 2 types- with probability ½, and he accepts p3 –which 

can be played by 3 types- with probability 1/3. So we precisely obtain the simple behavior 

we talked about in section 2. It follows that this easy behavior for which we found a 

limited rationality explanation, respects a strong consistency,  the best-reply matching one. 

What is more, we prove in the next section that this behavior can be generalized. 

 

7. Generalization: a simple behavior rule  

 

In this section we prove that the above behavior generalizes as soon as one smoothly 

changes the behavior of the consumer when he is indifferent between buying and not buying. 

We indeed agree with Droste & al.(2003) who tell that, if there are several best responses to 
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a strategy profile, there is no real motivation to assign to each best response the same 

probability (by dividing by the cardinal of the subset of best responses).  

So let us turn to the general case with n types, after elimination of the weakly dominated 

strategies. We focus on a game with n types, n prices p1, p2, ..pn, with hi<pi<Hi, i from 1 to n, 

which satisfies assumption (b). It follows that, for each pure strategy profile of the seller, the 

consumer is better off accepting pi if only ti plays pi and he is indifferent between accepting 

and refusing pi only if nobody (i.e. no type lower or equal to ti) plays pi. In this latter case, 

we now suppose that, instead of accepting and refusing pi with the probability of the event 

"no type lower or equal to ti plays pi" divided by 2, the consumer accepts pi only with the 

probability of this event divided by i.  Given that i is the cardinal of the set of types who can 

play pi, we introduce in some way a kind of risk aversion that grows with higher prices. This 

is not a silly assumption but we admit that we only introduce it in order to get the 

generalization of the result obtained in the three type case. 

The system of equations in the general case becomes: 

π1(pn)=q(pn)  

π1(pi)= q(pi) ∏
+=

−
n

1ij
j ))p(q1(    for i from 2 to n-1  

π1(p1)= 1- �
=

π
n

2i
i1 )p(     

πi(pn)= q(pn) +[∏
=

−
n

ij
j ))p(q1( ]/ (n-i+1)    for i from 2 to n-1 

πi(pk)= q(pk) ∏
+=

−
n

1kj
j ))p(q1(  +[∏

=

−
n

ij
j ))p(q1( ]/ (n-i+1)   for i from 2 to n-1 and k from i+1 to 

n-1 

πi(pi)= 1-�
+=

π
n

1ij
ji )p(     

πn(pn)= 1 

q(p1)= 1  

q(pi)= πi(pi) ∏ π−
−

=

1i

1j
ij ))p(1( + [ ∏ π−

=

i

1j
ij ))p(1( ] / i        for i from 2 to n 

It is easy to check that the solution for this system of equations is given by: 
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Proposition 4 

In the n type case, the BRM behavior is given by: 

πi(pj)= 1/(n-i+1)  for i from 1 to n and j from i to n. 

q(pj)= 1/j for j from 1 to n. 

 

In other words, each type plays each available price with the same probability and the 

consumer accepts each price with the probability 1 divided by the number of types who can 

play this price.  

Given that this behavior can also be explained with limited rationality (cf. section 2), we 

claim that it is difficult to find a more easy behavior that satisfies the same amount of 

consistency.  

It follows that we conclude that it would be worth testing this behavior experimentally, in 

order to see if it is sometimes adopted. 

 

 

8. Best-reply matching and social surplus 

 

The preceding behavior rule is not only simple and consistent but it can lead to positive 

payoffs for both the consumer and the seller, at least if the number of types is low.  

 

Proposition 5 

In the simplified experience good model with two types and two prices p1 and p2 examined 

in sections 5 and 6, best reply matching can lead to positive payoffs for both the consumer 

and the seller. Moreover the social surplus can be higher than the highest PBE social 

surplus in the  experience good model with two types examined in section 2.4  

 

To prove this proposition, we first observe that in the experience good model with two types 

studied in section 2, the highest social surplus limits to the highest seller's payoff (given that 

the consumer’s surplus is null cf. proposition 2). By usual maximization, one establishes that 

the highest social (seller) surplus is equal to ρ1(H1-h1)+ρ2(H2-h2)(H1-h1)/(H2-h1).  

                                                           
4 See Umbhauer (2007) for stronger results on social surplus. 
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We now turn to the BRM equilibrium in the simplified experience good model with 2 prices 

p1 and p2 examined in sections 5 and 6. We know that in this case the normal form BRM 

concept and the local BRM concept lead to the same result, i.e. t1 plays each price with 

probability ½ and the buyer accepts p2 with probability ½.  It follows that the surplus of the 

seller is equal to ρ1[(p1-h1)1/2 + (p2-h1)1/2.1/2]+ ρ2 (p2-h2)1/2. The consumer's surplus is 

equal to ρ1[(H1-p1)1/2 + (H1-p2)1/2.1/2]+ ρ2 (H2-p2)1/2. It follows that the total surplus is 

equal to ρ1(H1-h1)3/4 + ρ2 (H2-h2) 1/2.    

Let us set: H1=50, h1=49, H2=70, h2=61, ρ1=ρ2=0.5. The values of the parameters check the 

assumptions given in section 2; it follows that the highest PBE social surplus is 5/7. By 

contrast, the BRM social surplus, for example for p1 very close to 505 and p2=62, is equal to 

10.5/4, which is much higher than 5/7. The maximal consumer surplus for a p1 close to 50 is 

obtained for p2 very close to 61 and is equal to 3.5/4. The highest BRM seller payoff is 

obtained for p1 very close to H1 and p2 very close to H2 and is equal to 20.5/4 (the surplus of 

the consumer being negative in this case). 

Moreover it is easy to find values for p1 and p2 that lead to positive payoffs for both players, 

both payoffs being higher that the highest PBE payoffs. For example, for p1 very close to 50 

and p2=62, the consumer surplus is equal to 2/4 (>0) and the seller surplus is equal to 8.5/4 

(>5/7).  

It follows that the BRM approach can be socially efficient .This fact is not astonishing given 

that Nash equilibria (and PBE) are not necessary Pareto efficient and given that the Nash 

equilibrium consistency and the BRM equilibrium consistency are different. 

 

 

9. Best-Reply Matching and behavior in case of indifference 

 

An interesting development of BRM concerns the treatment of indifference. In both 

definitions of BRM (normal form and local), a player is supposed to share equally a 

probability between all the strategies that are best responses. For example, suppose that A1 

and B1 are best replies for player 1 only if player 2 plays C2. Suppose also that player 2 plays 

                                                           
5 We choose p1 very close (approximately  equal) to H1 in order to show that the result is not linked to the fact 
that p1 can be chosen lower than H1 in the BRM approach whereas it has to be higher or equal to H1 in any 
PBE. 
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C2 with probability q. In that case, the BRM concept assigns probability q/2 to A1 and to B1. 

Yet there is no reason to divide equally q between A1 and B1 (this fact led us to choose 

another division to get the result in proposition 4).  

More precisely, one should examine the whole set of equilibrium possibilities, in which the 

probability assigned to A1 is p, with 0≤p≤q , the probability assigned to B1 being 1-p. So we 

get the following new versions of BRM equilibria. 

 

Definition 3: New normal form BRM equilibrium 

 Let G=(N, (Si)i∈N, ( i� ) i∈N) be a game. A mixed strategy p is a new normal form BRM 

equilibrium if for every player i ∈ N and for every pure strategy si∈Si, : 

pi(si)= �
−

− ∈
δ

)s(Bs
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1

ii

p-i(s-i) 

with  
isδ ∈ [0, 1] for any si belonging to Bi(s-i) and  1

)s(Bs
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=δ�
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Definition 4: New local BRM equilibrium in signaling games 

 Let G be a finite signaling game in extensive form. Player 1 can be of n types ti, i from 1 to 

n, and chooses a message in a finite set M(ti). M(ti). M= �
n

1i
i )t(M

=
. Player 2 observes each 

message m and responds with an action r out of R(m), the finite set of actions available at 

message m. itπ (m) is the probability assigned by ti to message m and )r(m2π ) is the 

probability assigned by player 2 to the response r after having observed m. A behavioral 

strategy profile is a new local BRM equilibrium if: 

-for every type ti of player 1, and every message m available to type ti, 

itπ (m)= ))r((
jj

1
it

m

MCard

1j
m2

)m(Br
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=∈
πδ
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where r = )r,...r,r(
MCard2 mm1m is a profile of actions played by player 2 (one response for 

each possible message), )r(B
it  is the set of best responses of type ti to the profile r, δm∈    

[0, 1] for any m belonging to )r(B
it and �
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- after each message mk, for every action r available after mk: 

)r(
km2π = ))m((

)r(Bm

n

1i
ttr

1
km2

ii� ∏
−∈ =

πδ  

where m= )m,...,m,m(
n21 ttt  is the profile of messages sent by the n types of player 1, 

)m(B
km2 is the subset of player 2's best responses to the profile m after observing mk, δr ∈    

[0 , 1] for any r belonging to )m(B
km2 , and �

∈
=δ
)m(Br

r
km2

1. 

 

Proposition 6 

Each pure strategy Nash equilibrium is a new normal form BRM equilibrium. Each pure 

strategy Nash equilibrium in a signaling game is a new local BRM equilibrium. 

 

Proof: 

Consider a pure strategy Nash equilibrium s*. For each player i, si* is a (possibly among 

others) best reply to s-i*. Given that s-i* is played with probability 1, it is now possible, in a 

new normal form BRM equilibrium, to put probability 1 on si* (even if si* is not the unique 

best reply). It automatically follows that s* is a new BRM equilibrium, hence that the set of 

pure strategy Nash equilibria is included in the set of new normal form BRM equilibria.  

Consider a pure strategy Nash equilibrium s* in a signaling game. s* bijectively corresponds 

to a behavioral Nash equilibrium π*= (π1(.)*,π2(.)*). For each type ti, *(.)
itπ  assigns 

probability 1 to a message mi (because s* is a pure strategy Nash equilibrium), mi being a 

best reply (possibly among others) to π2(.)*. Given that player 2, after each message m, 

assigns probability 1 to only one response (because s* is a pure strategy Nash equilibrium), 

the new local BRM concept allows ti to put probability 1 on mi because player 2 assigns 

probability 1 to all the played responses. Reciprocally, for each possible message m, π2m(.)* 

assigns probability 1 to one response rm after the message m. Given that rm is a best reply 

(possibly among others) after m to π1(.)*= (.)*)(.)*,...,(
ni tt ππ , given that *(.)

itπ  assigns 

probability 1 to the unique message played by ti, it follows that the new local BRM concept 

allows to put probability 1 on rm. It derives that π*, and therefore s*, is a new local BRM 
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equibrium. So the set of pure Nash equilibria is included in the set of new local BRM 

equilibria.                                               � 

 But of course, this extension does in no way bring nearer together mixed Nash equilibria 

and BRM equilibria given that the consistency of both criteria differs. 

 

 

10. Conclusion: existence and further developments, a comeback to Akerlof’s result 

 

Let us first check the consequences of the above extension on the experience good model. 

Unfortunately this extension is not sufficient for the set of normal form BRM equilibria to 

become Kuhn equivalent to the set of local BRM equilibria.  

Let us come back to the simplified experience good model given in figure 3. 

According to table 3, the new normal form BRM concept leads to the set of equations I: 

Set of equations I 

p1= ααααq4  ,  p2= (1-αααα)q4,    p3=q2,    p4=p5=0,    p6=q1+q3 

q1=p1, q2=p2ββββ+p5+p6γγγγ,   q3=p3,  q4= p2(1-ββββ)+p4+p6(1-γγγγ) 

where α,β,γ ∈ [0, 1].  

The new local BRM concept leads to the set of equations II: 

Set of equations II 

π1(p3)=q(p3)     π1(p2)= (1-q(p3))q(p2)  π2(p3)= q(p3) + δδδδ(1-q(p3))(1-q(p2)) 

π3(p3)= 1    q(p1)= 1      q(p2)= (1- π1(p2)) π2(p2)+µ(1-ππππ1(p2))(1-ππππ2(p2))       

q(p3)= (1-π1(p3))(1-π2(p3))       with δ,µ ∈ [0,1] 

The Kuhn equivalent behavioral strategies to the mixed strategies (p, q) are given in the set 

of equations III: 

Set of equations III 

π1(p1) = p1+p2,  π1(p2) = p3+p4, π1(p3) = p5+p6 

π2(p2) = p1+p3+p5,  π2(p3) = p2+p4+p6,  π3(p3) = 1 

q(p1)= 1,  q(p2)= q1+q2  q(p3)= q1+q3.  
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The intersection between the set of new normal form BRM equilibria and the set of new 

local BRM equilibria, are the values pi, i from 1 to 6, qi, i from 1 to 4, α,β,γ, µ and δ, that 

satisfy simultaneously the three sets of equations I, II and III. 

Yet it is easy to establish that the only solution satisfying all the equations is given by : 

α=β=γ=µ=0, δ=1 

p2=q4=1, p1=p3=p4=p5=p6=q1=q2=q3= 0 

hence  

π1(p1) = 1  π1(p2) = π1(p3) = 0 

π2(p2) = 0,  π2(p3) = 1 

π3(p3) =1 

q(p1)= 1  q(p2)=q(p3)= 0 

In other terms, the intersection of the sets of new normal form and new local BRM equilibria 

only contains one equilibrium, which, surprisingly, is compatible with Akerlof’s result i.e.: 

only the lowest quality is sold on the market.   

More generally it is easy to establish the following result: 

 

Proposition 7 

In the general n-type case (described in section 7), Akerlof’s result is a new normal form and 

a new local BRM equilibrium. More precisely, the strategy profile such that the seller sets 

the price p1 if she is of type t1 and the price pn if she is of type ti, i from 2 to n, and the 

consumer only accepts the price p1, is a new normal form and a new local BRM equilibrium. 

 

Proof: 

It is immediate that the strategy profile such that the seller sets the price p1 if she is of type t1 

and the price pn if she is of type ti, i from 2 to n, and the consumer only accepts the price p1, 

is a pure strategy Nash equilibrium. It follows from proposition 6 that it is a new normal 

form and a new BRM equilibrium.                         � 

 

 It is interesting to observe that the values of the parameters δm and δr, in case of 

indifference, that ensure that the tested strategy profile is a new local BRM equilibrium, are 

the ones given in bold letters below.   
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Of course, this result should not make forget that in the two type case, the intersection of 

new normal form and local BRM equilibria does not shrink to Akerlof’s result, because in 

this model both sets of equilibria are equal, and do only contain the profile which leads t2 to 

play each of the two prices half of time and the consumer to accept the high price half of 

time. 

  

Let us now turn to the question of existence of BRM equilibria. Droste & al.(2003)  proved 

the existence of normal form BRM. It follows: 

 

Proposition 8: existence 

Each signaling game has at least one local BRM equilibrium. 

Each game in normal form has at least one new normal form BRM equilibrium, and each 

signaling game has at least one new local BRM equilibrium 

 

Proof: 

Looking for local BRM equilibria in the extensive form of the signaling game is equivalent 

to looking for normal form BRM equilibria in the agent normal form of the game (because 

in the agent normal form each agent plays only one time).  

Therefore, given that the agent normal form is a normal form game, it has a normal form 

BRM equilibrium; this normal form BRM equilibrium bijectively corresponds to a local 

BRM equilibrium (each strategy of an agent of player 1 becomes the local strategy of a type 

of player 1, and each strategy of an agent of player 2 becomes the local strategy of player 2 
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after observing a message). It derives that each signaling game has at least one local BRM 

equilibrium. 

The existence of at least one new normal form BRM equilibrium and of at least one new 

local BRM equilibrium immediately derives from the fact that the sets of new normal form 

and new local BRM equilibria respectively include the sets of normal form and local BRM 

equilibria.          � 

 

Let us finally conclude on the fact that it would be worth developing a local approach in 

more general extensive form games, especially games in which a same player has to play at 

several information sets. These games include traditional games like the centipede game and 

the prisoner’s dilemma. More generally it would be worth looking for the BRM equilibria in 

these traditional games because the new consistency behind BRM concepts allows to get 

new solutions that can better fit with real observed behavior.  
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Appendix 1 
 
(2) implies that ti, with i from 1 to n-1, is indifferent between pi*  and pi+1*, i.e. : 
(pi+1*-hi).q(pi+1*)= (pi*-hi)q(pi*)            
Given the definition of pi*, it follows that q(pi*) decreases in i .  
Let us prove that, for i from 2 to n-1, ti prefers pi* and pi+1* to any pj*, with j higher than i+1:  
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 (pj+1*-hj).q(pj+1*)= (pj*-hj)q(pj*)  for j from i+1 to n-1 
Hence  (pj+1*-hi).q(pj+1*) =(pj+1*-hj+hj-hi).q(pj+1*)= (pj*-hj)q(pj*) +(hj-hi)q(pj+1*)  
< (pj*-hj)q(pj*) +(hj-hi)q(pj*) (given that hj>hi and that q(pi*) decreases in i) . 
 Hence (pj+1*-hi).q(pj+1*)<(pj*-hi)q(pj*)  for any j from i+1 to n-1 and therefore: 
 (pj*-hi).q(pj*)<(pi+1*-hi)q(pi+1*) = (pi*-hi)q(pi*) for any j from i+2 to n. 
Let us now establish that ti, for i from 2 to n-1, prefers pi* and pi+1* to any pj*, with j lower 
than i. 
We have, for any j, with 1<j ≤i :  
(pj-1*-hi).q(pj-1*)= (pj-1*-hj-1).q(pj-1*)+(hj-1-hi)q(pj-1*) 
     = (pj*-hj-1).q(pj*)+(hj-1-hi)q(pj-1*) 
     =(pj*-hi).q(pj*)+ (hi-hj-1)q(pj*)+(hj-1-hi)q(pj-1*) 
     =(pj*-hi).q(pj*)+ (hi-hj-1)(q(pj*)-q(pj-1*)) 
        < (pj*-hi).q(pj*) because (hj-hj-1)(q(pj*) -q(pj-1*))<0. 
It follows that  (pj*-hi).q(pj*) < (pi*-hi)q(pi*) for j, with 1≤j<i. 
It follows that ti's behavior is optimal, for i from 1 to n. 
Let us now turn to the consumer. Given his out of equilibrium path beliefs, his reaction to 
out of equilibrium prices is optimal. We consider now his behavior after equilibrium prices: 
It is optimal to accept H1. 
Only ti-1 and ti play pi* for any i from 2 to n. 
Accepting pi* leads to the expected payoff: 
ρi-1 πi-1(pi*)(Hi-1-pi*)+ρi πi(pi*)(Hi-pi*) 
Given (1) this payoff is equal to 0, which justifies the buyer’s mixed strategy. 
 
Appendix 2 
 
Let us focus on a PBE path in which each type of seller gets a positive payoff. 
 
Let us first prove that if ti plays 3 prices p, p' and p", then p'=Hi. 
We necessarily have (p-hi)q=(p'-hi)q'=(p"-hi)q" where q, q' and q" are the probabilities of 
buying at prices p, p' and p". Necessarily q >q'>q">0 (given the positive payoff of each type 
of seller). It follows that, for each type tj with j<i, (p-hj)q>(p'-hj)q'>(p"-hj)q" and that for each 
type tj with j>i, (p-hj)q<(p'-hj)q'<(p"-hj)q". Therefore p' and p" can not be played by any type 
lower than ti and p and p' can not be played by any type higher than ti. It derives that p' is 
only played by ti. Given that q' is different from 0 and 1, the consumer is indifferent between 
buying and not buying; this is only possible if p'=Hi. 
It follows in the same way that, if ti plays 4 prices p, p', p" and p"', with p<p'<p"<p"', then 
p'=p"=Hi. Hence each type of seller sets at most 3 prices. Moreover, if she sets three prices, 
the middle price is Hi. 
 
We now show that if a price p is only played by ti, then it is necessarily equal to Hi. As a 
matter of fact, if p>Hi , p is refused and ti's payoff is null (a contradiction to the positivity of 
the payoff of each type of seller). If p<Hi then p is accepted with probability 1. It follows 
that p is necessarily the lowest price played in the game. Moreover, given that ti (weakly) 
prefers p to any higher equilibrium price, any type lower than ti also prefers p to the higher 
prices. Hence, either ti is different from t1 and p is played by several types (a contradiction to 
our assumption), either ti=t1; but the lowest price played by t1, in each PBE, is at least H1 (a 
contradiction to our assumption), given that any price lower or equal to H1 is accepted by the 
consumer. It follows that if a price p is only played by ti, then it is necessarily equal to Hi. 
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It derives from the above observation that if ti plays a price p different from Hi, then p is 
necessarily played by another type. Let us be more precise by showing that an adjacent type, 
ti-1 or ti+1, plays p.  
If p is played by tj with j<i-1, than ti-1 prefers p to any lower price. And, given that ti plays p, 
ti-1 prefers p to any higher price. It follows that ti-1 only plays p. 
Symmetrically, if p is played by a type tj with j>i+1, than ti+1 prefers p to any higher price. 
And, given that ti plays p, ti+1 prefers p to any lower price. It follows that ti+1 only plays p. 
 
It immediately follows that at most (2n-1) different prices are played in the game. As a 
matter of fact, given that a type ti can at most play 3 different prices, and given that, in this 
case, the middle price is necessarily Hi, t1 can only play 2 different prices H1 and p1>H1. 
Hence p1 is necessarily played by t2. It follows that t2 can at most play the three prices, p1, H2 
and p2>H2. It follows that t3 plays p2 and that t3 can at most play the three prices p2, H3 and 
p3>H3. And so on, till to tn-1 who can at most play three prices, pn-2,Hn-1 and pn-1. Hence tn 
plays pn-1 and she can at most play 2 different prices, pn-1 and Hn. The number (2n-1) 
follows. 
 
Let us finally prove that in a PBE path in which each type of seller gets a positive payoff, the 
buyer's payoff can only be equal to 0. 
It follows from the positivity of the payoff of each type of seller that the consumer accepts 
each equilibrium price with a positive probability. Let us suppose that the buyer accepts an 
equilibrium price p* with probability 1. In that case, p* is necessarily the lowest price played 
in the equilibrium. Call ti the highest type playing p*. Necessarily, p*≥hi and ti plays p* with 

at most probability 1. Yet assumption (b) ensures that 
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< hi≤p* for i from 2 to n. It 

follows that the consumer refuses p* (a contradiction), unless i is equal to 1. Yet, in that 
case, p* is necessarily equal to H1 and the buyer's payoff is null . Hence each price different 
from H1 is accepted with a probability lower than 1. It follows that the buyer is indifferent 
between buying and not buying at every equilibrium price different from H1. This means that 
his payoff is equal to 0 for any equilibrium price. 
 
In fact the buyer's payoff is null in any PBE of the studied experience good model. Consider 
any price p* of the PBE path. Either p is refused with probability 1, in which case the buyer's 
payoff is null. Either it is accepted with a positive probability, in which case the preceding 
observations ensure that the buyer's payoff is also equal to 0. 
 

Appendix 3 

 
It is immediate that in a PBE the probability of accepting a price strictly decreases in the 
price, because, if else, the types who play a low price would be better off switching to a high 
price. 
 
Let us now turn to the generalized simplified experience good model with n prices pi, i from 
1 to n, with hi<pi<Hi, i from 1 to n, which satisfies assumption (b), and in which the 
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consumer always accepts p1 and no type of seller plays a price lower than her reservation 
price. We prove that in this context, each type ti, i from 1 to n, in the normal form BRM 
equilibrium, plays each price pj, j from i to n, with a positive probability. 
 
To do so, one first proves that in a normal form BRM equilibrium, the consumer’s strategy 
(A/p1,R/pj), j from 2 to n, is played with positive probability.  
Let us suppose the contrary, i.e. that (A/p1,R/pj), j from 2 to n, is played with 
probability 0.  In that case, the consumer necessarily accepts a price pj, j>1, with positive 
probability. Suppose that pk is the highest price accepted with positive probability.  
If k<n-1, this means that the consumer plays the strategy (A/p1, ./pi, A/pk, R/pj) with positive 
probability, with i from 1 to k-1, j from k+1 to n, and the point meaning either A or R. A 
seller’s best reply to this strategy is (pk/ti,pn/tj), i from 1 to k and j from k+1 to n; this strategy 
is therefore also played with positive probability. The consumer’s strategy (A/p1,R/pj), j 
from 2 to n, is a best reply to (pk/ti,pn/tj), i from 1 to k and j from k+1 to n. It follows that 
(A/p1,R/pj), j from 2 to n, is also played with positive probability, a contradiction to our 
assumption.  
If k=n-1, the consumer plays the strategy (A/p1, ./pi, A/pn-1, R/pn) with positive probability, 
with i from 1 to n-2, the point meaning either A or R. A seller’s best reply to this strategy is 
(pn-1/ti,pn/tn), i from 1 to n-1; hence this strategy is played with positive probability. The 
consumer’s strategy (A/p1,R/pj,A/pn), j from 2 to n-1, is a best reply to (pn-1/ti,pn/tn), i from 1 
to n-1; hence it is played with positive probability. The seller’s strategy (pn/ti), i from 1 to n, 
is a best reply to (A/p1,R/pj,A/pn), j from 2 to n-1; hence it is played with positive 
probability. Finally (A/p1,R/pj), j from 2 to n, is a best reply to (pn/ti), i from 1 to n. It 
follows that (A/p1,R/pj), j from 2 to n, is played with positive probability, a contradiction to 
our assumption.  
If k=n, the consumer plays the strategy (A/p1, ./pi, A/pn) with positive probability, with i 
from 1 to n-1, the point meaning either A or R. A seller’s best reply to this strategy is (pn/ti), 
i from 1 to n; this strategy is therefore played with positive probability. The consumer’s 
strategy (A/p1,R/pj) j from 2 to n, is a best reply to (pn/ti), i from 1 to n. It follows that 
(A/p1,R/pj), j from 2 to n, is played with positive probability, a contradiction to our 
assumption.  
 
Let us now observe that: 
The seller’s strategy (pi/ti), i from 1 to n is a best reply to the buyer’s strategy (A/p1,R/pj), j 
from 2 to n. 
In turn (A/p1,R/pj), j from 2 to n, is a best reply to the seller’s strategy (pn/ti), i from 1 to n. 
In turn, (pn/ti), i from 1 to n, is the best reply to the buyer’s strategy (A/pi), i from 1 to n. 
Finally, in turn, (A/pi), i from 1 to n, is the best reply to the seller’s strategy (pi/ti) i from 1 
to n. 
It follows from this circularity in best replies, and from the fact that (A/p1,R/pj) j from 2 to n, 
is played with positive probability, that each of the above mentioned strategy is played 
with positive probability. Hence, given that (pi/ti), i from 1 to n and (pn/ti), i from 1 to n, are 
played with positive probability, each type ti, i from 1 to n, plays both pi and pn with 
positive probability. 
 
One also observes that: 
Take any j lower than n. The seller’s strategy (pj/ti, pk/tk), is the best reply to the 
consumer’s strategy (A/pi, R/pk),  i from 1 to j and k from j+1 to n. 
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In turn (A/pi, R/pk),  i from 1 to j and  k from j+1 to n, is a best reply to the seller’s strategy 
(pn/ts), s from 1 to n. 
Hence, given that (pn/ts), s from 1 to n, is played with positive probability (cf. above), (pj/ti, 
pk/tk), i from 1 to j and  k from j+1 to n, is played with positive probability.  
Given that j goes from 1 to n-1, it follows that each type ti plays any price pj, with j from i 
to n-1, with positive probability. 
 
 
 
 
 


