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Abstract

This paper uses a laboratory experiment to test the predictions of a dynamic global
game designed to capture the self-fulfilling nature of speculative attacks. The game has
two stages and a large number of heterogeneously informed agents deciding whether to
attack a status quo. In the first stage, the equilibrium size of the attack is decreasing
in both the underlying strength of the status quo and the agents’ cost of attacking.
In the second stage, the knowledge that the status quo has survived the first-period
attack decreases the incentive to attack, implying that a new attack is possible only
if agents receive new information. Our experimental evidence supports these theoret-
ical predictions in both stages. However, we also find that the subject’s actions are
overly aggressive relative to the theory’s predictions. We further find that the excess
aggressiveness in actions stems from the aggressiveness of their beliefs about others’
actions.

*I am especially grateful to Ernst Fehr for his invaluable insights, continuous support, and help in planning
and implementing the experiment. He also provided the resources and the financial support without which
this study would not be possible. I am indebted to my advisor, Marios Angeletos, for his time, helpful
comments, and guidance throughout this project. I would also like to thank my advisor, Daron Acemoglu,
Miriam Bruhn, Florian Ederer, Muhamet Yildiz, and the participants of the MIT macroeconomics and theory
field lunches for valuable comments and discussion. Finally, I would like to acknowledge the hospitality of
the Institute for Empirical Research in Economics where the experimental sessions were conducted. All
remaining errors are my own.

TDepartment of Economics, Massachusetts Institute of Technology, 50 Memorial Drive, MA 02139. e-mail:
oshurchk@mit.edu.



1 Introduction

In recent years, there has been a growing literature on global games — coordination games
of incomplete information — and their applications. By incorporating strategic uncertainty
into agents’ actions and introducing heterogenous information that agents receive over
time, these games can reduce the set of equilibrium outcomes, thereby delivering concrete
predictions about equilibrium selection.

Global coordination games can be applied to a variety of crises situations: a speculative
attack against a currency peg, a bank run, or a riot. It is currency crises, in particular,
that have received much attention in recent history. ~Within the affected country, a
crisis can have an enormous negative impact on economic growth and can cause political
change and turmoil.! Furthermore, in recent years, currency crises have been increasing
in frequency, while at the same time remaining largely unpredictable and unexpected.
It is this last fact that makes the theory of global games appealing, since it can help
us understand the way in which people form expectations and the way in which they
coordinate on different courses of action.

While it would be desirable to test the theory of global games with field data, this
proves to be a rather difficult task. Field data contain additional forces not captured by
the model that can limit the ability of standard econometric techniques to identify the
model. Furthermore, one of our goals is to understand the structure of agents’ equilibrium
strategies. However, the available data on crises are at the aggregate level and contain no
information about individual behavior. Finally, field data contain only the information
about people’s actions and provide no insight into people’s expectations that cause these
actions.

In this paper, we use an experimental approach to analyze agents’ behavior and for-
mation of expectations under the conditions of a speculative attack, which allows us to
shed light on the reasons behind the onset and timing of currency crises. For this, we
restrict our attention to the class of models that capture the following three features of

currency crises: (1) the coordination element of currency crises that arises due to strate-

'For example, in Indonesia, the Asian economic crisis of 1997-1998 caused the growth rate of real
GDP to fall from 8.2 percent in 1996 to 1.9 percent in 1997 to -14.2 percent in 1998. The figures are
similar in other affected countries (IMF, 2000). Furthermore, in Indonesia, the crisis played a role in
ending Suharto’s long period of authoritarian rule when riots and demonstrations caused his political
isolation, finally compelling him to resign. In Thailand and South Korea, democratic elections were held
and opposition parties came to power for the first time since political liberalization (Freedman, 2004).
The effects of these crises go beyond the borders of just one nation. More and more often, crises spread
from the country of origin to other economies, threatening to cause worldwide contagion (Forbes, 2000,
Boston, 2003).



gic complementarities in agents’ actions, (2) the heterogeneity of expectations about the
underlying economic fundamentals among the agents, and (3) the fact that the agents’
beliefs about their ability to induce a regime change may vary over time. While the
so-called “second generation” models of currency crises (Obstfeld,1996) focus on the first
feature, the literature on static global games (Morris and Shin, 1998) concentrate on the
second. More recently, Angeletos, Hellwig, and Pavan (2006) captured the third feature
of crises by extending the global games framework to incorporate dynamics.

Model. Our experiment is based on a two-period variant of the latter paper. The
model consists of a large number of agents and two possible regimes, the status quo and
an alternative. The game continues into the second period as long as the status quo is
in place. In each period, each agent can either attack the status quo (i.e., take an action
that favors regime change), or not attack. The net payoff from attacking is positive if the
status quo is abandoned in that period and negative otherwise. Regime change, in turn,
occurs if and only if the percentage of agents attacking exceeds a threshold § € R that
parameterizes the strength of the status quo. The parameter 6 captures the component
of the payoff structure (the “fundamentals”) that is never common knowledge. In the
first period, each agent receives a private signal about #. If the game continues into the
second period, agents may or may not receive more private information about 6.

The model admits a variety of interpretations. For example, it can be applied to
self-fulfilling bank runs, currency crises, or political change. In these contexts, regime
change occurs, respectively, when a large run forces the banking system to suspend its
payments, when a large speculative attack forces the central bank to abandon the peg, or
when a large number of citizens decide to take actions to subvert a repressive dictator or
some other political establishment.

Model Predictions. In the first period (stage) of the game, agents follow monotone
threshold strategies, attacking the status quo if their individual signal is below a certain
threshold and refraining from attacking otherwise. ~This implies that the size of the
attack is monotonically decreasing in the strength of the economic fundamentals, #, and,
equivalently, the agents’ strategies are decreasing in their individual private signals. The
second testable prediction in the first stage is that both the individual and aggregate
thresholds are decreasing in the cost of attacking.

The second-period predictions depend on the information structure. If the agents do
not receive a second private signal in the second stage, then not attacking is the unique
equilibrium. This result arises from the fact that agents have learned that the game
survived a past attack, and hence the fundamental @ must be good enough (which can be

viewed as “endogenous learning”). On the other hand, in addition to a no-attack equilib-



rium, a new attack becomes possible, if agents receive sufficiently precise new information
in the second stage and have a relatively “lenient” initial prior about the state of the
fundamentals, i.e., the first-period attack is not too aggressive. Multiplicity originates
from the interaction between two elements: the knowledge that the regime survived past
attacks and the arrival of new private information over time (i.e., the interaction between
“endogenous” and “exogenous learning”). In particular, “endogenous learning” reduces
the probability of attack in the second period, but “exogenous learning” can make a new
attack possible.

Experimental Results. To test the predictions of the model, we conduct several treat-
ments of a laboratory experiment where we vary the strength of the fundamentals, the
cost of attacking, and the availability of information in the second stage.

In the first stage of the experiment, we find that agents’ strategies are consistent
with the theory that predicts a unique equilibrium in monotone strategies. However, we
observe that the subjects behave more aggressively relative to the theory prediction for
the treatments in which the cost of attacking is set to be relatively high. Furthermore,
we find that the agents’ behavior is less responsive to the changes in the cost of attacking
than in theory.

In the second stage of the experiment, we detect the effects of the interaction between
learning and coordination. In order to distinguish between the effects of endogenous and
exogenous learning, we first run a treatment where the subjects do not receive any new
private information. In this case, the only additional information that the subjects receive
in stage two is that the game has not ended, which can be interpreted as “endogenous
learning.” We find that, in the second stage of this treatment, the subjects are in fact
learning from the outcome of the first stage since the probability of attack is greatly
reduced. However, the endogenous learning effect is not as strong as in the model, and
the magnitude of the effect depends on the cost of attacking.

In order to examine the interaction between endogenous and exogenous learning, we
then run a treatment where the subjects receive an additional more precise private signal
in the second stage of the experiment. In this case, the subjects are still able to learn
endogenously through their observation that the experiment proceeded into stage two, but
in addition, they can now learn exogenously by incorporating this more precise information
into their decision to attack the status quo. We find that the probability of attack in
the second stage now increases significantly relative to the treatment with endogenous
learning only.

While the theory predictions regarding the monotonicity of strategies and the impor-

tance of learning are supported by the experimental evidence, as mentioned above, we



find that the subject’s actions are overly aggressive relative to the theory’s predictions.
Therefore, we test two hypotheses about the aggressiveness of subjects’ behavior. The
first hypothesis postulates that, given their beliefs of what other agents will do, the sub-
jects make “mistakes” or “too aggressively.” An alternative hypothesis is that agents
do not make “mistakes” given their beliefs of what others will do and that it is their
beliefs that are more aggressive that the theory predicts. We find evidence that leads
us to reject the first hypothesis: given the subjects’ aggressive expectations relative to
the model predictions, their actions are mostly consistent with best-response strategies.
That is, subjects’ aggressive behavior stems from their aggressive beliefs, rather than from
“mistakes”.

Related Literature. The theoretical literature on coordination games, applied to cur-
rency crisis, starts with a seminal paper by Obstfeld (1996). Obstfeld’s model is a coor-
dination game with perfect information that yields multiple equilibria. While these so-
called “second generation” models capture the self-fulfilling aspect of currency crises that
can happen without any apparent change in macroeconomic fundamentals, they can also
be viewed as incomplete and weak in delivering policy prescriptions or predictions about
the short-run timing of crises. Seeking to resolve the indeterminacy, Carlsson and van
Damme (1993a), (1993b) and later Morris and Shin (1998) relax Obstfeld’s assumption
of common knowledge. They show that, under certain restrictions on the information
structure, multiplicity of equilibria can be eliminated by assuming that agents receive
heterogenous private information about the state of the fundamentals. This result has
already been applied to several macroeconomic phenomena: see Goldstein and Pauzner
(2001) and Rochet and Vives (2004) for bank runs; Corsetti, Guimaraes and Roubini
(2003) and Morris and Shin (2004) for debt crises; Atkeson (2000) for riots; Chamley
(1999) for regime switches; and Edmond (2005) for political change.

To capture the interaction between the dynamics of expectations about the economic
fundamentals and the dynamics of coordination, Angeletos, Hellwig, and Pavan (2006)
extend the static benchmark of Morris and Shin by allowing agents to take actions in
multiple periods and accumulate information over time. This extension emphasizes the
idea that speculators have the option to take multiple shots against the currency peg and
may also accumulate information over time and learn from past outcomes. The authors
show that dynamics may sustain multiple equilibria. Multiplicity originates from the
interaction between two types of learning: the knowledge that the regime survived past
attacks (“endogenous learning”) and the arrival of new private information over time
(“exogenous learning”).

The experimental literature that tests the predictions of the above models begins
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with studies that are based on coordination games with perfect information, in which
equilibria are Pareto-rankable (as is the case in Obstfeld’s model). Cooper et al. (1990)
find that the observed pattern of play is accurately predicted by the Nash equilibrium
concept and that coordination failures can emerge in which the outcome is a Pareto-
inferior Nash equilibrium. Van Huyck, Battalio, and Beil (1990) find similar results when
they study a class of tacit pure-coordination games with multiple equilibria. In particular,
their experimental results suggest that the Pareto-dominant outcome is extremely unlikely
either initially or in repeated play and that coordination failures arise due to strategic
uncertainty. In a follow-up experiment, Cooper et al. (1992) study coordination games
with nonbinding, pre-play communication. They find that in coordination games with
a cooperative strategy, one-way communication increases play of the Pareto-dominant
equilibrium relative to the no-communication baseline.

Cabrales, Nagel, and Armenter (2003) test the global coordination game theory in two-
person games with random matching inspired by Carlsson and van Damme (1993a). They
find that, with private information about the payoffs, the subjects’ behavior converges to
the theoretical prediction after enough experience has been gained. In a recent paper,
Heinemann, Nagel, and Ockenfels (2004) test the predictions of the static speculative-
attack model of Morris and Shin in a laboratory experiment. The authors compare
sessions with private and public information, and conclude that in all sessions subjects
used threshold strategies, i.e., attacked whenever the state of the fundamentals or the
signal was beyond some critical state or signal, respectively. The authors point to these
results as evidence in support of the theory which predicts a unique equilibrium under
certain parameter restrictions.

This study is the one of the first to test the predictions of dynamic global game theory
in a laboratory experiment. Brunnermeier and Morgan (2004) examine “clock games”
that end when the third of six players exits, and those three players receive a payoff that
increases continuously in the exit time. The authors report that, consistent with the
unique symmetric pure strategy Nash equilibrium, players exit sooner when they have
better information about other players’ choices and clock settings. In a more recent
study, Cheung and Friedman (2006) examine speculative attacks with varying amounts of
public information featuring continuous time and focus on size asymmetries (i.e., the effect
of a large player on behavior and outcomes). They find that weaker (or more rapidly
deteriorating) fundamentals increase the likelihood of successful speculative attacks and
hasten their onset, and that public access to information about either the net speculative
position or the fundamentals also enhances success. The presence of a larger speculator

further enhances success.



To our knowledge, our experiment is the first to put to the test a dynamic global
game and focus on the theoretical predictions of uniqueness in dynamic global games, to
detect learning over time, and to address the questions of subjects’ aggressiveness and
rationality.

The rest of the paper is organized as follows. Section 2 describes the dynamic two-
period model of a speculative attack and discusses theoretical predictions to be tested.
Section 3 describes the experimental procedures and treatments. Section 4 describes the

results of the data analysis. Section 5 concludes and discusses possible extensions.

2 The Model

Our model is a simple two-period version of the model developed by Angeletos, Hellwig,
and Pavan (2006) in which there are two regimes, the status quo and the alternative. The
agents, indexed by ¢, decide simultaneously between two possible courses of action. Agent
i can either choose action A (“attack”), an action that favors regime change, or choose
action B (“not attack”), an action that favors the status quo. The status quo collapses
if the mass of agents choosing action A (“aggregate size of the attack”), exceeds 6, which
parametrizes the strength of economic fundamentals. A low value of 6 thus represents
a relatively weak state of the fundamentals, and a high value of 6 represents a relatively
strong state of the fundamentals. We will denote the regime outcome by R;.; € {0,1}
where R;,1 = 0 refers to the survival of the status quo, while R, ; = 1 refers to the
collapse of the status quo. Action A is associated with an opportunity cost c. If action
A is successful (i.e., the status quo is abandoned), each agent choosing action A earns an
income of y > ¢. If not (i.e., the status quo prevails), then the agent choosing action A
earns 0. Action B yields no payoff and has no cost.? The payoff of an individual agent

can be written as

ay(y—c)if Ay >0

’L:U i)A76:
i = Ulair, A1, 6) { it A, < 0

where a;; € {0,1} denotes the action chosen by agent i at time ¢ (a; = 1 represents
attacking and a;; = 0 represents not attacking) and A; denotes the aggregate size of the

attack at time ¢.

2Note that the payoff to the agent does not depend on 6. Or it only depends on it in the following
way: if 6 is so low that the regime collapses, the payoff to the agent choosing action A is y, but if the
regime survives, the payoff is always the same (0).



Note that Obstfeld’s key assumption that delivers multiplicity is that the state of the
fundamentals, 6, is common knowledge among the agents. In that case, each agent’s best

response function is

g(As,0) = argmaxU(-) =

aite{O,l}

1if A, >0
0if A, <6

We can see that, for all § € [0, 1], there are two pure-strategy Nash equilibria in this game,
namely that either all agents choose action A or all agents choose action B; [0, 1] is the
region where multiplicity is possible.

However, in our setup, agents have heterogeneous information about the strength of
the status quo. Nature draws 6 from a normal distribution N(z,1/a) which defines the
initial common prior about #. Note that z can be thought of as the public signal that all
agents receive. In addition to receiving a public signal, each agent then receives a private
signal x;; = 0 + &,;, where &, ~ N(0,1/0,) is i.i.d. across agents and independent of ¢

3 The status quo is in turn abandoned if

and 3, is the precision of private information.
and only if the measure of agents choosing action A, which is denoted by A;, is greater

than or equal to 6.

2.1 First-Period Predictions

Let us first focus on the equilibrium in the first period of the game. Note that it is
strictly dominant to choose action A for sufficiently low signals — namely for z; < z,
where z solves Pr(6 < 0|z) = ¢/y — and to choose B for sufficiently high signals — namely
for z; > T, where T solves Pr(f < 1|T) = c¢/y.* This suggests that we should look for
monotone Bayesian Nash equilibria in which the agents’ strategy is non-increasing in ;.

Next, we characterize the equilibrium in the first period. Suppose that there is a
threshold, x7, such that an agent will choose action A if and only if he gets a private
signal below this cutoff (x; < z7). The measure of agents choosing action A is then
decreasing in 6 and is given by 4,(0) = Pr(z; < 23|0) = ®(\/B; (x5 — 0)), where ® is the
c.d.f. of the Standard Normal distribution. It follows that the status quo is abandoned if
and only if 6 < 07, where 67 solves 07 = A;(67), or equivalently

07 = (/B (a5 — 67)). (1)

3The information structure is parameterized by 3, = 0';’% and o = 02, the precisions of private and
public information, respectively, or equivalently by the standard deviations, o, ; and o,. The agents
know the values of z, «, and S,.

4Note that, for notational tractability, we supress the individual subscript, 4, from now on.
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The posterior probability of regime change for an agent with signal z; is then simply
Pr(Ry = 1]z1) = Pr(0 < 07|z1). Since the latter is decreasing in x7, each agent finds it

optimal to choose action A if and only if z; < x}, where z3 solves Pr(6 < 07|x}) = ¢/y.

Since posteriors about # are normally distributed with mean ﬁfﬁxl + ﬁz and variance

ﬁlﬁ (precision 3, + «), this condition is equivalent to

5y o )
o + a(f7 — x] — 2) | =c¢/y. 2
(VEFa - e = %) =ty )
If we solve the system of the two equations (1) and (2), we get the equilibrium values
(x7,07) in the first period of the model. Such a solution always exists and is unique for all
z if and only if g; > % (See Appendix A for the proof.) Moreover, iterated elimination
of strictly dominated strategies implies that, when the monotone equilibrium is unique,
there is no other equilibrium.

Figure 1 illustrates the equilibrium in the first period. It plots the aggregate size of
the attack, A;, against 6.

A
Finite Precision of
Private Information
Precision of Private
Information
Approaching Infinity
*
0 01 6

Figure 1: Size of the Attack, A, vs. 6 for Finite g,and 3, Approaching Infinity

As the precision of private information approaches infinity, the theory predicts that
everyone should choose action A for all § < 67, and no one should choose action A for all
0 > 07, which is represented by the black line in Figure 1. However, for finite precision
of private information, the theory predicts that A;(#) is monotonically decreasing in 6,
resulting in the grey line in Figure 1.

The following propositions summarize the first-period predictions of the theory that
we would like to test.

Prediction 1. There exists a unique x3, such that in any equilibrium of the dynamic

game, an agent chooses action A (“attack”) in the first period if and only if z1 < x}. By



implication, A1(0) is decreasing in 0, and there exists a unique 07 such that the status quo
is abandoned in the first period if and only if 0 < 67.

Prediction 2. The thresholds 07 and x} are decreasing in c, the cost of choosing
action A.

Note that in a coordination game with complete information, such as Obstfeld (1996),
the cost of attacking plays no role in equilibrium play: either everyone attacks the status
quo or no one attacks the status quo, regardless of cost. Moreover, agents’ strategies

need not be monotonic in 0.

2.2 Second-Period Predictions

The game continues into the second period as long as the status quo is in place, and
the game ends if the status quo is abandoned in the first period. We will consider two
possibilities for the information structure in the second period. First, suppose that the
agents receive no additional private signal. In this case, when agents arrive at the second
period, they observe that the status quo must have survived the first-period attack. From
the observation that the status quo is still in place, the agents learn that the state of
the fundamentals is not too weak, because otherwise it would have collapsed under the
first attack. In fact, they now know that § must be above #]. The knowledge that
6 > 0] causes a first-order-stochastic-dominance shift of beliefs upwards, causing agents’
behavior to become less aggressive. It turns out that this effect is strong enough to
imply that no agent is willing to take action A in the second period, delivering a unique
equilibrium.’

Prediction 3. If no new information arrives in the second period, then choosing action
B (“not attack”) for all x is the unique continuation equilibrium.

Testing this prediction allows us to isolate the effects of endogenous learning on agents’
behavior. However, we would also like to examine the effects of the interaction between
endogenous and exogenous learning. This can be accomplished by changing the in-
formation structure in period two, such that agents receive an additional signal that is
sufficiently precise. That is, x;2 = 0 + &,, where £, ~ N(0,1/5,) and 3, is sufficiently
high.

The size of the attack in period two is given by As(f) = Pr(ze < z3|0), which is
decreasing in 0, and the probability of regime change for an agent with signal x5 is
Pr(Ry = 1|xg, Ry = 0) = Pr(0 < 65|z2,60 > 07), which is decreasing in x5 if 65 > 67.

®See Lemma 2 in Angeletos, Hellwig, and Pavan (2006) for proof of uniqueness in any monotone
equilibrium. Overall uniqueness can be shown by iterated deletion of strictly dominated strategies. See
Appendix A for the iterated dominance argument.



Therefore, in any equilibrium in which an attack occurs in the second period, ¢ and z}

solve

03 = (/By} — 63)) (3)
BT gt ) }
P(/By + 04(5 ol + By Fira? ~ 01))

Equations (3) and (4) are the second-period equivalents of equations (1) and (2) in

the dynamic setting. We can solve them for 65 and x3, which will tell us under which
conditions we can have an attack in the second period. In particular, the public infor-
mation revealed to all subjects before the first period must be such that z is sufficiently
high.® Intuitively, when z is high (“lenient prior”), arrival of new more precise private
information makes the marginal agent more aggressive and may eventually offset the in-
centive not to choose action A induced by the knowledge that the regime survived past
attacks. Indeed, if z is sufficiently high, so that 67 < 6, then a second attack necessarily
becomes possible once f3, is sufficiently high (i.e., the second signal is sufficiently precise).
Note that 6, is the limit of the equilibrium threshold of the static game as the precision
of private information becomes infinite (in particular, f,, = 1 — ¢/y). In this case, the
theory predicts that , in addition to the no-attack equilibrium (which is always an equi-
librium), there can also be an attack equilibrium (for proofs and derivations see Appendix
A). The effect brought about by the introduction of exogenous information, making the
marginal agent more aggressive, counteracts the effect of endogenous learning that makes
the agent relatively less aggressive. In fact, the effect of more precise information can
offset the incentive not to choose action A induced by the knowledge that the regime has
survived past attacks, thus making new attacks possible.

Note that, when z is low (“aggressive prior”), an increase in the precision of private
information makes the marginal agent less aggressive (that is, 0] decreases with 3,). The
knowledge that the regime survived an attack in the first period then only reinforces
this effect. Therefore, for sufficiently low z, such that 67 > 6., there exists a unique
equilibrium, such that no agent ever chooses action A after the first period. However,
in this experiment, we explore the scenario where a new attack becomes possible, and
therefore only test the following prediction:

Prediction 4. There is always an equilibrium in which agents choose action B (“not

attack”) for all x in the second period. If the agents receive a new private signal in the

OFor a special case where the cost of attacking equals 1/2, “high z” means z > 1/2. Under this
condition, 07 (z) < 1/2, because 67 (z) is monotonically decreasing in z and 07(1/2) = 1/2. (See Appendix
A for proof.)
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second period such that 4 is sufficiently large and if 0] < 6, then, in addition to the
no-attack equilibrium, there also exists an x5 and an equilibrium in which an agent chooses
action A (“attack”) if and only if xo < x3.

In the following sections, we proceed to test the above predictions in a laboratory

experiment.

3 Overview of the Experiment

3.1 Procedures

We conducted six sessions of the experiment at the experimental laboratory at the In-
stitute for Empirical Research in Economics at the University of Zurich, with the first
four sessions held in June of 2006 and the following two sessions held in October of 2006.
The subjects were all students at the University of Zurich. The procedure was kept the
same throughout all six sessions, except that the order of the treatments was reversed
to test whether the order of the treatments mattered for the results. All sessions were
computerized using the program z-Tree (Fischbacher, 1999). The subjects were first asked
to read through and sign informed consent forms for non-biomedical research.” Paper
copies of the instructions® were distibuted to the participants prior to the beginning of
the experiment. The subjects were asked to answer several control questions that tested
their understanding of statistics, as well as the experimental procedures. Questions were
answered in private. The subjects could not see or communicate with one another. At
the end of the experiment, each participant filled out a computerized questionnaire.” The
questionnaire asked the subjects about their strategies, as well as their understanding of
statistics and probability. At the very end, each subject was paid in cash a show-up fee
equal to 15 Swiss Francs (CHF) and his or her earnings over the course of the session.
Final income of each subject was first given in points and then converted to Swiss Francs
at the rate of 10 points = 50 centimes for Sessions 1-2 and at the rate 10 points = 25
centimes for Sessions 3-6. Average income (including the show-up fee) was 83.8 CHF,
45.5 CHF, and 25.5 CHF for Sessions 1-2, 3-4, and 5-6, respectively.'

Each of the six experimental sessions had 30 participants divided randomly into two

groups of fifteen people. Each session consisted of 40 independent rounds of play, with

"Copies of the informed consent forms in German or English are available upon request.

8Full copies of the instructions in German or English are available upon request for all treatments.

9Copies of the questionnaire questions in German or English are available upon request.

Note that the differences in average incomes across sessions 3-4 and 5-6 arise due to the differences
in the cost of choosing action A.
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each round corresponding to a new random number ¢ drawn from a normal distribution
N(z,1/a)!*.  Thus, one can interpret each round as a new economy parametrized by
the state of fundamentals, 8. The subjects were informed of the mean and the standard
deviation of this distribution in the instructions. In addition, at the beginning of the
round, each subject received a private signal ( “hint number” x;) about the random number
0. The subjects were given information about the distribution of this hint number in the
instructions.

Each round consisted of one or two periods (“stages”) of decision-making. In stage 1
of each round, each subject had to decide between actions A or B as described in section
2. Once all the subjects chose their actions in each stage of every round, they were asked
a follow-up question, namely: “How many other members of your group do you think
chose action A?” Next, each subject received the following information: if the game
ended after stage one, he or she found out that action A was successful, learned the value
of the unknown number, how many other subjects chose action A, and his or her payoff
in the round. If the game continued into the second stage, two scenarios were possible.
In the treatment without new information, the subject did not get an additional “hint
number” after the first stage, but only got a reminder of his or her original private signal
and received notification that action A was not successful. In the treatment with new
information, the subjects received a new more precise signal if the game continued into
stage 2.

We ran different treatment conditions based on the cost of action A and on the infor-
mation provided to the participants in the second stage of the experiment. The various

treatment conditions are summarized in Table 1.

1'This experiment relies on the use of the normal distribution, as opposed to the uniform distribution
used by Heinemann, Nagel, and Ockenfels (2004). The ideas are essentially identical. The benefit of
running the experiment using the normal is the tractability of the analysis. The theory involved in the
dynamic case is significantly more complicated as compared to the static benchmark, which necessitates
the use of the normal. The normal distribution is also relatively simple to grasp for the test subjects,
since it is fully parametrized by the mean and the precision. To ensure the subjects’ full understanding
during the experiment, we provided them with several examples and conducted a quiz to familiarize them
with the normal distribution.
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Table 1.

Treatment Summary.

Cost of Action A Information in Stage 2
First 20 Last 20 First 20 Last 20
Session Rounds Rounds Rounds Rounds
1,2 20 50 No No
3.4 50 20 No No
5 60 60 No Yes
6 60 60 Yes No

3.2 Parameterization

We re-scaled all numbers by a factor of 100, so that the subjects did not have to deal with
fractions. We chose the gross payoff, y, of a successful attack to be 100 and the gross
payoff of an unsuccessful attack to be 0. This payoff scheme was chosen for its simplicity
for the theory, as well as for the experiment participants.

Table II records the remaining parameters by session.

Table II.
Parameterization.
Session z, 1o 1/B, 1/8,
1-4 65, 50 7 N/A
5-6 75,55 10 1

Note that the mean of the normal distribution was chosen to be greater than 50, in
order to ensure that we can test the scenario where a new attack becomes possible with
the arrival of new information in the second stage. In order to get a reasonable number
of random draws within the interval of [0,100], we kept the mean“not too high.” The
standard deviation was chosen based on satisfying the criterion for stage-one uniqueness,
which necessitates that the precision of public information must be sufficiently lower than
the precision of private information. We also, however, needed to keep the precision from

being too low, again in order to get enough random draws within the interval [0, 100].
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4 Data Analysis

4.1 Variables and Summary Statistics

In our analysis, the main dependent variables are the size of the attack (measured as
the fraction of subjects choosing action A) on the aggregate level, and the action (a
binary choice variable, with 1 representing action A and 0 representing action B) on the
individual level.

The main explanatory variables are the random number, 8, on the aggregate level and
the subject-specific hint number, z, on the individual level. We also look at several other
variables which can have an effect on outcomes. One of these controls is the cost of
action A (attacking), which is equal to 20 or 50, depending on the treatment, in Sessions
1-4 and is always equal to 60 in Sessions 5-6. When we explore the impact of endogenous
learning, we look at the effect of stage on actions, where stage takes on values of 1 or 2.
In order to understand the effects of exogenous learning, we introduce a new-information
dummy (NI dummy), which takes on a value of 1 in the treatment where subjects receive
a more precise private signal in the second stage and a value of 0 otherwise. Finally, we
look at subjects’ expectations about the size of the attack by creating a belief variable.

Table Al in the Appendix provides descriptive statistics for the experiment.

4.2 First Period Predictions

In the first stage of each independent round, the subjects chose between actions A and
B. Both the aggregate and the individual-level data confirm that observed behavior is
consistent with monotone strategies. In order to see this on the aggregate level, we
plot the size of the attack (i.e., the total number of players out of 15 choosing action A)
against 6 for the cost-50 treatment and find that A is strictly decreasing in 6, just as
the theory predicts (see Figure 1). Moreover, the figure below shows that, for low states,
almost everyone always chose action A, while for high states, almost everyone always
chose action B. There is an intermediate range of fundamentals for which the size of
the attack is decreasing in . We test this nonparametrically by carrying out a locally
weighted regression of the number of attackers on the value of  which is represented by
the black monotonically decreasing line in Figure 2.'> The monotonicity of the fitted line

confirms the hypothesis.'3

12The fact that we have very few negative draws of 6 is the reason behind the slightly positive slope
of the fitted line in that range. That is, the positive slope is driven by “mistakes.” The fitted line is
otherwise monotonic over the critical range of fundamentals.

13See Figures Bl and B2 in Appendix B for similar plots for the other two cost treatment conditions.
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Figure 2: Kernel Regression (Cost-50 Treatment)

The analysis of the individual-level behavior in stage 1 also supports the theoretical
predictions. Figure 3 was constructed by creating discrete bins for x and calculating
the probability of choosing action A for each bin. The figure demonstrates that the
probability of choosing action A is decreasing in the private signal over almost the entire

range of x.!4

Pr(Action A)
1 [ 1 [ [ [ [ [ [ |

X
<0  0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 >100

Figure 3: Probability of Action A vs. z (Cost-50 Treatment)

We also ran subject-level regressions of each individual’s action on her private signal,

x, and various controls. We use ordinary least squares to estimate the effects.!® The

14See Figures B3 and B4 in Appendix B for similar plots for the other two cost treatment conditions.
15While a logit regression would be more appropriate given the binary nature of the dependent variable,
we use a linear probability model since the logistic approach would result in biased estimates from a fixed-
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results are reported in Table III.

Table III.
Stage 1 Individual Level Regressions (Pooled Data for All Sessions)

Dependent Variable: Action

1 2 3
Private signal, x -0.0065"  -0.0066"  -0.0012""
(0.0001) (0.0001)  (0.0001)

Cost of action A -0.0026™"  -0.0005"
(0.0003)  (0.0002)

Belief 0.0646
| (0.0011)
R* 0.57 0.58 0.83
No. of observations 6000 6000 6000

Note: Robust standard errors in parentheses. Regressions include group
and round fixed effects. For sessions 5 and 6, only the no-new-information
treatment data are used. Significance levels: ** 5%, *** 1%.

According to Column 1, the effect of = on the choice of action is negative, as the
theory predicts, and statistically significant at the 1 percent confidence level. This effect
remains strong after controlling for other factors, such as the cost of action A and the
beliefs about the size of the attack.

effects regression due to the panel structure of the dataset. Let p;; represent the probability that subject
i attacks in period ¢, then Ela;] = 1- piy + 0 (1 — pi) = pir. This is modeled as p;; = Prla; = 1] =
F(x},8+4u;). For alinear probability model, F'(z,3) = x},6+u,, and the usual panel data methods apply.
That is, 8 can be consistently estimated by eliminating p, using the within transformation (demeaning
the data). This is possible because the MLE of p, and 8 are asymptotically independent. The only issue
is that a@;; is not guaranteed to lie in the unit interval.

In order to use the logistic approach, we need to define a threshold a, such that

aiy = lifal, >0
= 0ifaj <0,

where af, = z,8 + p; + vyt with Prla;; = 1] = Prlaj, > 0] = Pr{vs > —2,0 — u;] = F(a,8 + p;), where
the last inequality holds as long as the density function for F' is symmetric around zero. In this case, y;
and [ are unknown parameters and as N — oo, for a fixed T', the number of parameters i, increases with
N. This means that p,; cannot be consistently estimated for a fixed T'. This is known as the incidental
parameters problem.

The MLE of u; and 8 are no longer asymptotically independent with a qualitative limited dependent
variable model with fixed T' (like logit) as demonstrated by Chamberlain (1980). In his paper, Cham-
berlain proposes using the conditional logit approach to correct for this problem. For estimates using
the conditional logit technique, see Table B-II in Appendix B.

Note also that the specifications in Table III include group and round fixed effects. We have also run
regressions that include group, round, and subject fixed effects as a robustness check. The results are
very close and are reported in Table B-III of Appendix B.
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While subjects seem to be following threshold strategies, which supports the theo-
retical prediction of a unique equilibrium in the first period, we can learn more about
the behavior of agents from estimating the magnitude of these thresholds and comparing
them to the theoretical predictions. For every round of every session of the experiment,
we run logit regressions of action on the private signal x, calculate predicted values from
these regressions, and find the particular private signal, ,,, for which the 45-degree line
intersects the predicted values, where subscript r denotes round and subscript s denotes
session. Finally, we average across rounds to get T,, the estimated individual threshold
for every session. We then use equation (1), derived in Section 2, to get the estimated
aggregate threshold, /és, for every session. Table IV reports the stage-one threshold esti-
mates and compares them to the theoretical thresholds 6* and x*. Column 5 of the table
reports the percentage of subjects who wrote that they followed a threshold strategy in

their post-experiment questionnaire.

Table IV.
Threshold Summary.

Percent Using

Session Cost  #* [ x* T
Thresholds
1,2 20 815 786 &7.8 84.3 93%
1,2 50 48.1 772 47.8 825 93%
3.4 20 815 79.2 &87.8 85.3 95%
3.4 50 48.1 72.7 47.8 77.1 95%
5,6 60 34.8 69.2 30.9 72.9 92%

While the theoretical thresholds should be highly sensitive to the cost of attacking, the
estimated thresholds decrease only slightly with cost. Even though we ensure that the
subjects are well aware of the change in costs from treatment to treatment, they seem to
not be very responsive to this change. While higher cost of attack does have a negative
effect on the decision to attack on the individual level, as is evident from the negative and
statistically significant coefficient on cost in Column 2 of Table III, the magnitude of this
effect is clearly smaller than the theory predicts.

Most importantly, the estimated thresholds are considerably higher than the theoret-
ical thresholds for the cost-50 and cost-60 treatments. This suggests that subjects are
much more aggressive in their behavior than the theory would predict for the high-cost
scenarios, but not for the low-cost ones.

We next seek to understand the trends in and the reasons behind the relative aggres-

siveness of subjects. Do thresholds change over rounds? Does the excess aggressiveness
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relative to theory arise due to “mistakes” in choices given beliefs, or due to “mistakes”

in beliefs? To address the first question, we plot the estimated thresholds, 5, across

rounds.'®
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Figure 4: Estimated thresholds, @, vs. rounds (pooled data for sessions 1-4)

The estimated aggregate thresholds do not vary significantly with round, since the
fitted black line exhibits only a slight upward trend. We can also see that the variance
of thresholds does not decrease with rounds, which implies that subjects are not learning
from round to round.

Regarding the second question, we can calculate the number of subjects who did not
follow a best-response strategy given their private signal. In order to determine each
subject’s best response, we assume that each individual knows that others are using an
average threshold ¥ > x* in each round of the experiment. Assuming that each subject
expects that others’ follow the threshold, Z, we next ask whether individual behavior is
consistent with the theoretical best response strategy to this Z. In order to answer this
question, we compute a threshold 7 that is the best response to Z, which is simply the
individual threshold that sets the posterior probability of regime change Pr(f < 5@) equal
to the cost of attacking, c¢. Given this best-response threshold, ;JT\\, a rational agent will
attack if and only if her private signal, x, is below 7 and refrain from attacking otherwise.
We call strategies that do the opposite “mistakes.” That is, a “mistake” would be an
instance when a subject attacks when x > 7 or does not attack when x < 7.

We find that, on average, in approximately 91 percent of cases subjects followed a
strategy that was a best response to the estimated threshold, z. Figures 5 and 6 show

the number of “mistakes” by round for sessions 1-2 and 3-4, respectively.

-~

6 Note that the threshold @ is found using an equation equivalent to (1), ®(v/a(z — 8)) = .
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Figure 5: Proportion of “mistakes” Figure 6: Proportion of “mistakes”
vs. rounds (Sessions 1-2) vs. rounds (Sessions 3-4)

The figures above show that the number of “mistakes” relative to best-response does
not change significantly with round. The dispersion also does not seem to decrease
across rounds.'”  The solid black line represents the fraction of “mistakes” averaged

across rounds.

4.3 Dynamic Predictions
4.3.1 Endogenous Learning

So far, we have analyzed the data from the first stage of the experiment. In this section,
we will discuss the effects of learning across stages under the condition that subjects do
not receive an additional signal in the second stage.

We find that the knowledge that the experiment has not ended in the first stage bears
a strong effect on subjects’ behavior in the second stage. In particular, we find that the
average probability of attack in the second stage of the no-new-information treatments is

much lower than the average probability of attack in stage one, as is shown in Figure 7.

17Using standard OLS techniques to fit a regression line through these data produces slope coefficients
that are no statistically significantly different from zero. See Table B-VII in Appendix B for regression
results.
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Figure 7: Average Probability of Action A for the No-New-Information Treatments

The same conclusion can be drawn from looking at the individual-level regressions of
action on the private signal, x, that now include pooled data for stages one and two and
add stage as a control variable. Table V reports that stage has a negative and highly
statistically significant effect on action, which means that the probability of subjects

choosing action A is reduced as we go from stage one to stage two.!®

18 Again, see Table B-IV in Appendix B for estimation using conditional logit.

Note also that the specifications in Table V include group and round fixed effects. We have also run
regressions that include group, round, and subject fixed effects as a robustness check. The results are
very close and are reported in Table B-V of Appendix B.
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Table V.
Individual Level Regressions (Pooled Data for All Sessions)

Dependent Variable: Action

1 2 3

Private signal, x -0.006"°  -0.006" " -0.001""
(0.0001)  (0.0001)  (0.0001)

Cost of action A -0.0026""  -0.0006""
(0.0003)  (0.0002)

Belief 0.0632"""
(0.0011)

Stage 0.2308"  -0.2272"7  -0.0466
(0.0073)  (0.0073)  (0.0057)

R? 0.61 0.62 0.84
No. of observations 8820 8820 8820

Note: Robust standard errors in parentheses. Regressions include group
and round fixed effects. For sessions 5 and 6, only the no-new-information
treatment data are used. Significance levels: ** 5%, *** 1%.

Figures 8 and 9 show the reduction in aggressiveness in the strategy space of the agents

for cost-50 and cost-20 treatments, respectively.

0 ‘
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Figure 8: Probability of Attack vs. x by Stage for Cost-50 Treatments
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Figure 9: Probability of Attack vs. x by Stage for Cost-20 Treatments

In both figures, the probability of action A is lower in the second stage relative to the
first stage. This shows that subjects exhibit some endogenous learning. However, the
learning effect is not as strong as the model predicts, which suggests that agents continue
to act overly aggressively in the second stage of the experiment. Note also that the
reduction is substantially larger in the high-cost treatment, suggesting that the cost of

action A has an important effect on aggressiveness in stage two.

4.3.2 New Information

In this section, we turn to the experimental treatments that explore the effects of providing
the subjects with a new more precise private signal in the second stage. Here, the theory
predicts that an attack becomes possible in stage two, given that the parameters have been
chosen appropriately. Figure 10 contrasts the average probability of action A in the two
stages of the experiment for the no-new-information (NNI) and the new-information (NI)
treatments. Note that the figure was constructed using only the rounds that continued
into the second stage and for which the random number drawn was below 100. This

allows us to make the clearest possible comparison between treatments.

22



0.30

0.25 +— —]

0.20 +— —— —

0.15 {— S -

Pr(Action A)

0.10 +— — —

0.05 — S — -

0.00

NNI NI NNI NI
Stage 1 Stage 2

Figure 10: Average Probability of Action A for the NNI and the NI Treatments

First, consider the average probability of action A for the two treatment conditions in
the first stage. The probabilities are very close in magnitude: 0.25 for the treatment with
no new information in stage two and 0.26 for the one with new information in stage two.
We can therefore conclude that a subject in the new-information treatment, who knows
before the experiment begins that she will be receiving a more precise private signal in the
second stage, does not wait to take action until the second stage, but rather behaves in a
similar fashion to a subject in the no-new-information treatment. Secondly, note that the
probability of action A is reduced dramatically in the NNI treatment, as the experiment
continues into the second stage. However, we find that the average probability of action
A in the second stage of the NI treatment is not statistically significantly different from
the probability of action A in the first stage.

We confirm this result by running an individual-level regression of action in the second
stage on the private signal, x, and the new-information treatment dummy. The results
of this regression are reported in Table VL' The statistically significant coefficient on
the NI dummy tells us that subjects are more likely to choose action A in stage two of
the NI treatment than in stage two of the NNI treatment, which is consistent with the

theoretical prediction.

9For estimates using the conditional logit technique, see Table B-VI in Appendix B.
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Table VI.
Stage 2 Individual Level Regressions (Sessions 5 and 6)

Dependent

Variable: Action

Private signal, x -0.0021""
(0.0002)

NI dummy 0.0842""
(0.0145)

R’ 0.20
No. of observations 1395

Note: Robust standard errors in parentheses.
Regressions include group, subject, and round fixed
effects. Significance level: *** 1%.

Figure 11 shows the probability of action A in the strategy space of the agents for the
NNI and NI treatments with cost of action A of 60. For most bins, the probability of
action A in the second stage for the NI treatment exceeds the probability of action A for
the NNI treatment. Moreover, for x above 80, the probability of action A in the second
stage in the NI treatment exceeds the probability of action A in the first stage.

1.00 ——

0.90 | —
0.80 —
0.70
0.60
0.50
0.40 -
0.30 -
0.20 | -
0.10 -
0.00

Pr(Action A)

|

<40 40-50 50-60 60-70 70-80 80-90 90-100 >100

O First-Stage Probability of A, Nl and NNI Average
O Second-Stage Probability of A, NNI
W Second-Stage Probability of A, NI

Figure 11: Probability of Action A vs. x by Stage for the NNI and NI Treatments

Recall that the theory predicts that, in addition to a no-attack equilibrium, there

is a possibility of new attacks in the second stage if 7 < 6. In order to test this
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prediction, we selected the parameters that would allow us to satisfy 67 < 6%, relying on
the theoretical prediction for 07 (07 = 34.8 for z = 75 and 0°° = 40). Given 0] = 34.8,
our findings support the theory. However, given that the estimated threshold, /6’\1, is more
aggressive than the theory predicts, this condition is not satisfied in the data (69.2 > 40).
Conditional on the actual first-period threshold being above 6°°, the theory predicts that
no attacking should remain the unique equilibrium.?’

In summary, the evidence suggests that the quantitative predictions about the thresh-
olds are rejected in both stages of the experiment due to the subjects’ aggressive actions.
However, the evidence supports the qualitative theoretical predictions, namely, that the
mass of agents choosing action A is monotonically decreasing in 6 and that endogenous
learning reduces the probability of choosing action A in the second stage, while new

information (exogenous learning) increases this probability.

4.4 Rationality and Consistency of Beliefs
4.4.1 Rationality

So far, we have shown that the data seem to support the qualitative predictions of the
theory; however, we see that the behavior of experimental subjects is more aggressive
than predicted in both the static and dynamic frameworks. In this section, we seek to
understand whether the aggressiveness results from behavior that is irrational given the
agents’ beliefs, and whether the agents’ actions are consistent with their expectations of
the actions of others.

First, we address the question of rationality by testing two hypotheses. The first

[

hypothesis postulates that agents make “mistakes” or act “too aggressively,” given their

beliefs of what other agents will do. This pattern of behavior can be explained as a

"7 strategy, where subjects attack all the time simply because attacking is

“rule of thum
perceived to be more “fun” for some reason. This should be especially the case whenever
the cost of action A is relatively small. An alternative hypothesis is that agents do not
make “mistakes” given their beliefs of what others will do, and it is their beliefs that are
more aggressive that the theory predicts.

Recall that before revealing the outcome of the experiment at a particular stage, we
ask each subject about his or her belief as to the number of other group members choosing
action A. Figure 12 plots these beliefs about the fraction of agents choosing action A

(the attack fraction) and the theoretical benchmark for these beliefs over z; in the range

20Tf, however, the theory were to be extended to capture first-stage aggressiveness, the predictions for
the second stage would change.
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[0, 100] for Cost-20, Cost-50, and Cost-60 treatments. The theoretical benchmark is the
function g(z;,2*) = E [CIJ <$U—;9> |xl}, where x* is the theoretical threshold derived in
section 2.1. That is, g(x;, x*) gives the expectation of the mass of agents choosing action
A held by an agent with signal x; who expects all other agents to use the threshold z*.
The actual reported beliefs are a function g(z;), which we estimate from the actual data

using a kernel regression approach.
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Figure 12: Beliefs about Fraction of Agents Choosing Action A vs. Theory Prediction

In sections 4.2 and 4.3, we found that the agents’ actions are more aggressive than
the theory predicts. Figure 12 shows that the subjects’ beliefs are more aggressive than
predicted by the theory in the cost-50 and cost-60 treatments. (The agents’ expectations
of the size of the attack lie above/to the right of the theoretical expectation for higher
values of z;.) These are exactly the cost treatments for which we find more aggressive
actions relative to theory. However, the beliefs in the cost-20 treatment do not seem
to be much more aggressive than the theoretical prediction. Looking back at Table 4,

agents’ actions are not more aggressive than the theoretical prediction in the cost-20
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treatment. Note also that the plots in Figure 12 demonstrate that the observed beliefs
are less sensitive to the individual signal than the theory predicts, since g(z;) is flatter
than g(x;, 2*). This feature of the observed beliefs is present in all cost treatments.

Figure 12 provides visual support for the view that the subjects of these experiments
do not act aggressively merely due to irrationality, but rather due to a rational response
to their overly aggressive expectations. However, we need to provide still more concrete
evidence. In particular, we can construct a measure of rationality based on our data of
the subjects’ beliefs. A rational agent will choose action A if and only if the expected
payoff from choosing it is greater than the cost. However, for the sake of this comparison,
we would actually need to know the subject’s belief about the probability of a successful
attack, not his or her belief about the size of the attack.?! This, however, is not a question
a typical subject is capable of answering.

Thus, we compute Z; such that g(z;) = g(x;;7;). In other words, for every subject i
with signal x;, we look for a value Z; that minimizes the distance between the two curves
in Figure 12 for each cost treatment. The threshold 7; is the value of x that rationalizes
subject i’s belief about the size of the attack. These values are graphed across x; for

different costs of attacking in Figure 13.
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Figure 13: Thresholds z; for different cost treatments

The values of T; decrease with the cost of attacking. Within each cost treatment,

T; increases with the individual private signal, x;. This suggests that there is a positive

21 That is, the relevant condition for rationality is to choose action A if and only if E[A(0)|z;]— (aFpzit
s z) > c. Rather, instead of E[A(#)|z;] in expression, the proper term is the expectation of 14,

atB
1if 6<6*
where Lag)>0 = To<o = {415 gog- -
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relationship between the individual agent’s error in beliefs about the actions of others and
the agent’s expectation about . Agents with a high private signal x; expect others to
use less aggressive strategies (i.e., have a higher 7;).

Given this Z;, we compute the corresponding value of f;, using equation (1). Finally,
in order to see which decisions were rational, we use the fact that a rational agent would
always choose action A if and only if ® (\/m(@- - ;8—1@ — ﬁz)) > ¢ and choose
action B otherwise. Using this criterion, we find that subjects are rational in 76.98
percent of cases in the cost-20 treatment, 90.79 percent of cases in the cost-50 treatment,
and 89.44 percent of cases in the cost-60 treatment.

The above evidence leads us to reject the hypothesis that subjects are making “mis-
takes” or acting “too aggressively” given their beliefs. The data suggest that the subjects’
beliefs are overly aggressive. However, given these beliefs, agents do not make “mistakes”

(i.e., act “rationally”) in 86 percent of cases, on average.

4.4.2 Consistency

Secondly, we address the issue of consistency by asking whether the subjects’ actions
are consistent with their beliefs about the size of the attack. Ideally, we would like to
compare each individual’s expectation of the fraction of agents attacking given his or her
individual signal, x, to the actual fraction of agents attacking given x. However, the
latter metric is not available (that is, we can only plot the aggregate attack against 0,
not x). However, we can employ the law of iterated expectations, in order to provide a
measure of consistency. In particular, the theory tells us that the following equality must

hold by the law of iterated expectations:
E[A(0)] = E[E[A(9)|2]] ()

Thus, we can test whether actions are consistent with individual beliefs by estimating
the right- and the left-hand sides of equation (5). The left-hand side of equation (5) is
the expectation of the actual fraction of agents choosing action A, which we compute by
integrating numerically the size of the attack that we get from the data, weighted by the
distribution of . On the right-hand side of (5), E[A(#)|z] is the subject’s belief about the
fraction of agents choosing action A. To compute E [E[A(0)|z]], we average beliefs across
x. That is, we integrate numerically the function g(x;), weighted by the distribution of

x. Table VII presents the results from this analysis.
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Table VII.
Test of Consistency in Stage 1.

Cost Average Realized Beliefs Averaged
Treatment Attack Fraction Across x
20 0.5857 0.5354
50 0.5799 0.5347
60 0.5071 0.4615

To construct the above table, we use stage-one data for the three cost treatments.
Note that the values reported in Columns 2 and 3 of Table VII are close to one another,
which serves as evidence that actual outcomes are consistent with beliefs.

Next, we perform a consistency test for the second stage of the experiment (Table

VIII).

Table VIII.
Test of Consistency in Stage 2.

Cost & Info  Average Realized Beliefs Averaged

Treatment Attack Fraction Across x
20 NNI 0.0227 0.0610
50 NNI 0.0769 0.2101
60 NNI 0.0461 0.1505
60 NI 0.1248 0.1484

Note that there is a reversal in aggressiveness: in the first stage, agents’ beliefs are
slightly less aggressive than their actions, while in the second stage, agents’ actions are
less aggressive relative to their beliefs, especially in the high-cost treatments with no new
information. The subjects seem to think that others will be daring and attempt another
attack, while they themselves behave cautiously. There is also a difference between the
new-information and the no-new-information treatments within the cost-60 treatment.
The subjects beliefs are approximately the same, but actions are vastly different. Agents
act much more aggressively upon arrival of new information than without it, just as the

theory predicts.

5 Conclusion

This paper uses a laboratory experiment to examine how learning affects the dynamics of

coordination in a global-game environment. The main goal of this study is to understand
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the interaction between the dynamics of expectations about the state of the fundamentals
and the dynamics of coordination. In particular, we focus on the effects of “endoge-
nous learning” (learning over time from past regime outcomes) and “exogenous learning”
(learning by receiving private information from outside sources)

The experimental evidence supports the theoretical predictions of our model. In
the first stage of the experiment, we find that the size of the attack is monotonically
decreasing in the strength of the economic fundamentals, 6, and that the agents’ strategies
are decreasing in their individual private signals. In the second stage, we find that
the probability of attack is significantly higher in treatments where subjects receive an
additional private signal (treatments with “endogenous” and “exogenous learning”) than
in treatments where agents do not receive an additional private signal (treatments with
“endogenous learning” only).

However, we also observe that subjects display excess aggressiveness in their actions
in both stages. In the first stage, the estimated thresholds followed by the subjects are
higher than the theoretical thresholds in the high-cost treatments. Moreover, while the
cost of attacking does decrease subjects’ aggressiveness significantly, the reduction is not
as large in magnitude as the theory predicts. In the second stage, the learning effect is
not as strong as the model predicts.

In order to understand the source of this excessively aggressive behavior, we test two
hypotheses. The first posits that the subjects make “mistakes” or act too aggressively,
given their beliefs about the actions of others. The second states that agents do not
make “mistakes” or act too aggressively, given their beliefs about the actions of others.
This test of the theory of global games proves to be useful, since in these models actions
are driven by the formation of expectations about other players’ actions. We find that
agents do not seem to make “mistakes” or act too aggressively, given their beliefs about
the actions of other subjects.

This study can be extended along several dimensions. Experimentally, the framework
can be extended to have more than just two periods, in order to shed some light on
the timing of crises. As another extension of this experimental framework, it would be
interesting to see if communication plays a significant role for equilibrium selection in the
dynamic global game setting, and multiplicity detection in particular.

Finally, we find evidence that agents’ expectations about the actions of others are
overly aggressive relative to theory. Thus, a natural extension of the theory seems to
involve exploring theoretical reasons for this excess aggressiveness and incorporating them
into our models. Extending the theoretical literature in this direction may therefore prove

to be a fruitful line of research.
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6 Appendix A: Derivations

Let us solve for some of these equilibrium values and do some comparative statics that
will help with the experiment. First, we solve for the equilibrium threshold in period 1,
07(z), for the special case where cost of attacking, ¢, equals % (as was the case in some of

the experimental treatments)

07 = @(\/By (27 - 07)). (6)

Solving (6) for x7, we get
1] =67+ 5, Pe(6).

Now we substitute =] into the other equilibrium equation, namely

@(m(e’;— b _o z)>:1/2

51“‘05 _ﬁl‘i‘Oé

o (VB Tale; - 5o o4 a e - 0 ) — 12

61+O€ _Bl‘i‘OJ

Putting the terms that contain 67 on the left-hand side of the expression, we get

0 o BPeTNO) 212

Bi+a B+« _1/61+a+51+az' (™)

We can simplify this expression further, using the fact that ®~*(1/2) = 0 and multiplying

both sides by B{%
1/2
i e = - 0
Solving for 67 gives us the equilibrium threshold in the first round, 67(z), such that
the regime will collapse in the first round (R; = 1) if and only if § < 7. Such a solution
exists and is unique if and only if the following relationship holds for the precisions:

B1 > a?/(2m). To see this, we define

1/2

G0:(2),2) =2 —0] + # 1) =o.

Note that G(07(z), ) is continuous and differentiable in § € (0, 1), and that G(0, z) = —o0

and G(1,z) = oo, which implies that there necessarily exists a solution and any solution
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satisfies 07(z) € (0,1). This establishes existence. To prove uniqueness, note that

0G(07(2), 2 1/2 1y
022 D gmyiop) -1
1

We can re-write this using the formula for the derivative of an inverse function:

e 1 o
V)= S ~ sy

where ¢(-) is the p.d.f. of the standard normal distribution and is bounded by \/LTW (i.e.
max,eg ¢(w) = \/%7) Therefore,

0G(05(2),2) _ B 1 =
= — 1> —2r —1.
o%; a g@ @) T a VT

1/2
Then if ﬁlT\/ 2r —1 > 0, or if g—; > %, the function G is strictly increasing in 6]
(%&Z)’Z) > 0), which implies a unique solution to (8).
We can use the Implicit Function Theorem to demonstrate that the threshold 67(z) is

monotonically decreasing in z. Let F(67(z), z) be defined as

1/2 x _1/p*
o o-1(67) a
F 9* = 9* M1 1) =0
( 1(2)7Z) Bl+a 1 B1+a Bl_i_az
007  OF/0r ~ita N 1 ©
TUOF/08, T o _ B gy 1- Bl @y
0= OF/on T~ (@) 1= B () (6))

As we have shown above, the derivative of the inverse of the c.d.f. of the standard normal

is positive and reaches its minimum at +/27. We also know that the relationship between

1/2 X
the precisions is Bla > \/LzTT Thus, the whole fraction in (9) is negative (i.e., % <0).

Intuitively, 07 is decreasing in z because when the public signal (z) has a high mean, the
fundamentals are relatively good. So, the region where the attack will be successful in
the first period is relatively small. Thus, the threshold theta is low. In other words, when
the mean of the prior is high, the agents are initially pessimistic about their ability to
overthrow the regime. So, in the first period, the size of the attack is relatively small.
Then, in the second period, if the agents get a sufficiently precise private signal, an attack
becomes possible. (That is, agents can become optimistic about their ability to change
the status quo.) This is why this scenario can lead to multiplicity.

We can also verify that 67(1/2) = 1/2 (but only if the public signal is completely

35



uninformative relative to the private signal, that is if /3, — 0). Let us substitute 1/2

into equation (7):

s () -2 e, e ()

1/2
1/ _ 1

_61—1—04_ \/61-1-04'

B 1
By +8)?  Bi+5
1
1+ 8/
which is true for all 8,if a/3; — 0 or equivalently if 3, /a — oo. To put this differently,
we just found the Morris-Shin limit threshold. The Morris-Shin limit is the limit as the

ratio of precisions of private and public information approaches infinity, or in other words

Squaring both sides

=1.

private information becomes infinitely precise relative to public information. It is

élinoo@l(z) =5= l—c=0y.

Finally, we employ the Implicit Function Theorem again to show that 67(z) is monotonic
in 3;. Define

06, OH/9B, =B, 707N(0})
851 GH/E?@’{ 1 — %/2(@71)/09;)

(10)

We already know that the denominator of (10) is always negative. Let us focus on the

numerator. The inverse c.d.f. of the normal has the following property:

Oy < 0if 67 <1/2
1Oy > 0if 6 > 1/2.

Therefore, to sign this fraction, we need to consider our two cases. In Case 2/, z is
low (z < 1/2), which implies that 67(z) > 1/2 because we have proved above that 07(z)
is monotonically decreasing in z and that 67(1/2) = 1/2. This implies that ®~!(07) > 0
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and the numerator of (10) is positive (i.e., 07(2) is decreasing in ;). In Case 2", z is high,
that is z > 1/2, so we know that 67(z) < 1/2. In this case, ®~!(0]) < 0 , the numerator
of (10) is negative (i.e., 07(z) is increasing in ;). This shows that 67(z) is monotonic in
B,.

Iterated Dominance Argument.

We have established there exists a unique monotone equilibrium in the first stage
whenever the noise in private information is small enough. This result, however, leaves
open the possibility that there are other non-monotone equilibria. We now show that there
is no other equilibrium and, what is more, that the equilibrium is dominance solvable.

For simplicity, consider the special case where o = (0. This allows us to eliminate the
dependence on z and denote the strategy by a(x;) and the aggregate size of the attack
by A(6).

For any 7; € [—00,400], let Az () denote the mass of agents attacking (choosing
action A) when (almost every) agent chooses action A if and only if z; < 7;. Next, we

define the function
V(‘rh 51) = E[U(l’ A51 (‘9)7 ‘9) - U(O, A51 (‘9)7 0)|ZL’1],

which represents the utility difference between choosing action A and choosing action B
for an agent who has a private signal x; and expects the other agents to attack if and

only if their signals fall below z;. From the model,

Az, (0) = O(v/51 (71— 0))

and
V(zy,31) =y — y®(/Bi(z1 — 1)) — ¢,

where 6 = 0;(Z;) is the unique solution to Az, (6;) = 6y, or equivalently the inverse of
F1=0,+ 5;1/2(1)71(51)-

Note that 51 is increasing in 77, which implies that V' (z,x;) is increasing in z;, That is,
the more aggressive the other agents are, the higher the payoff from choosing action A.
Furthermore, V' (x1,7;) is decreasing in x;: the higher the private signal, the lower the
expected payoff from choosing action A.

Next, note that V' (z1, ;) is continuous in z; and satisfies V' (z1,77) — y — ¢. > 0 as

x1 — —o0 and V(z1,71) — —c < 0 as #; — +o0o. We can therefore define a function
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h(-) such that 1 = h(Z;) is the unique solution to V(xy,7;) = 0 with respect to ;.
That is, when agents j # ¢ choose action A if and only if x;; < 7, agent ¢ finds it
optimal to choose action A if and only if z;; = h(z;). Since V(z1,7;) is continuous in
both arguments, decreasing in x; and increasing in 7, the function h(Z;) is continuous
and increasing in 7;. Finally, note that h(z;) has a unique fixed point x] = h(z]) and
this fixed point is indeed the threshold z7 of the unique monotone equilibrium that we
constructed in section 2.1.

Now, construct a sequence {z; ;}7>, with z,, = —oo and z,; = h(z;; ) for all

k > 1. In particular, letting 0, , ; be the solution to

124
Ty =011+ 5 g 1(@1,1%1),

we have
V(x17£1,k—1) =Y - yq)(\/ 51(351 - Ql,k—l)) — ¢
and thus
—-1/2 x 1
Ty =01+ 6 TP (1 —c/y).
Thus, with x, y = —oo, we have 0, =0, z;; = 1_1/2<I>*1(1 —¢/y), and so on. Clearly,

the sequence {z, ; }22, is increasing and is bounded above by z7. Hence, it converges to
some z;. By continuity of i(-), the limit z; must be a fixed point of h. But we have
already proved that h(-) has a unique fixed point, and therefore z; = 7.

Next, construct a sequence {7}, with T1g = —oo and 7y, = h(T1,-1) for all
k > 1. Note that the sequence is decreasing and is bounded below by xj. Hence,
sequence {T1x}%2, converges to some Z;. By continuity of A(-), the limit 7; must be a
fixed point of h. But we have already proved that h(-) has a unique fixed point, and

therefore 7; = z7.1
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Appendix B: Tables and Figures

Table B-I.

Descriptive Statistics.

Sessions 1-4  Sessions 1-4  Sessions 5-6  Sessions 5-6

Cost 20 Cost 50 No New Info New Info
Mean 9 73.48 64.40 77.78 74.10
Min 6 -73.83 -92.73 -107.48 -49.06
Max 0 208.46 188.30 256.30 256.68
Mean x (Stage 1) 73.37 64.45 77.80 74.25
Min x (Stage 1) -82.55 -106.92 -128.23 -71.84
Max x (Stage 1) 220.85 201.84 277.64 281.59
Mean # Attackers
Stage 1 9.16 8.89 6.88 7.18
Mean # Attackers
Stage 2 1.28 0.89 0.50 1.94
Mean Belief (Stage
1) 8.57 8.35 6.62 7.03
Mean Belief (Stage
2) 1.76 1.58 1.08 2.71
% Successful
Attacks (Stage 1) 0.57 0.54 0.43 0.41
% Successful
Attacks (Stage 2) 0.019 0.00 0.00 0.021
Median Comfort
Level with Stats 4 4 4 4
Number of
Subjects 120 120 60 60
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Table B-II.
Stage 1 Individual Level CLogit Regressions (Pooled Data for All Sessions)

Dependent Variable: Action

1 2 3

Private signal, x -0.1046 " -0.1064"  -0.0603""
(0.0100) (0.0104)  (0.0091)

Cost of action A 20.0306""  -0.0115"
(0.0046)  (0.0065)

Belief 0.6842"
| (0.0511)

Pseudo R* 0.74 0.75 0.91
No. of observations 6000 6000 6000

Note: Standard errors in parentheses. Regressions include group
and round fixed effects. For sessions 5 and 6, only the no-new-information
treatment data are used. Significance levels: * 10%, ** 5%, *** 1%.

Table B-III.
Stage 1 Individual Level Regressions (Pooled Data for All Sessions; Subject Fixed Effects)

Dependent Variable: Action

1 2 3
Private signal, x -0.0065  -0.0066"  -0.001""
(0.0001)  (0.0001)  (0.0001)

Cost of action A -0.0026""  -0.0004"
(0.0003)  (0.0002)

Belief 0.0668 "
(0.0010)

R? 0.58 0.59 0.84
No. of observations 6000 6000 6000

Note: Robust standard errors in parentheses. Regressions include group,
subject, and round fixed effects. For sessions 5 and 6, only the no-new-
information treatment data are used. Significance levels: ** 5%, *** 1%.
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Table B-IV.
Individual Level CLogit Regressions (Pooled Data for All Sessions)

Dependent Variable: Action

1 2 3

Private signal, x -0.1052°7  -0.1078"  -0.0614""
(0.0090)  (0.0096)  (0.0097)

Cost of action A -0.0339™"  -0.0148"
(0.0044)  (0.0064)

Belief 0.7079""
(0.0485)

Stage -1.634177 -1.596477  -0.8440
(0.1157)  (0.1145)  (0.1785)

R’ 0.75 0.76 0.92
No. of observations 8820 8820 8820

Note: Standard errors in parentheses. Regressions include group
and round fixed effects. For sessions 5 and 6, only the no-new-information
treatment data are used. Significance levels: ** 5%, *** 1%.

Table B-V.
Individual Level Regressions (Pooled Data for All Sessions; Subject Fixed Effects)

Dependent Variable: Action

1 2 3

Private signal, x 0.006""  -0.006" -0.0008""
(0.0001)  (0.0001)  (0.0001)

Cost of action A 0.0026""  -0.0005"
(0.0003)  (0.0002)

Belief 0.0655
(0.0008)

Stage 0230777 02272 -0.0399"
(0.0073)  (0.0073)  (0.0054)

R? 0.62 0.62 0.85
No. of observations 8820 8820 8820

Note: Robust standard errors in parentheses. Regressions include group,
subject, and round fixed effects. For sessions 5 and 6, only the no-new-
information treatment data are used. Significance levels: ** 5%, *** 1%.
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Table B-VI.
Stage 2 Individual Level CLogit Regressions Using (Sessions 5 and 6)

Dependent

Variable: Action

Private signal, x -0.1428™"
(0.0199)

NI dummy 0.7783"
(0.4518)

R? 0.67
No. of observations 1395

Note: Standard errors in parentheses.
Regressions include group, subject, and round fixed
effects. Significance level: * 10%, *** 1%.

Table B-VII.
Aggregate-Level OLS Regressions of Average Fraction of

Mistakes on Rounds

Dependent Variable:
Average Fraction of Mistakes
Sessions 1-2  Sessions 3-4

Round*Cost -0.0024 -0.0011
(0.0019) (0.0021)
Constant 0.1148™ -0.0717"
(0.0261) (0.0044)
R? 0.04 0.01
No. of observations 40 40

Note: Robust standard errors in parentheses.
Significance levels: ** 5%, *** 1%.
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