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Abstract

This paper examines data from the Norwegian television game show Joker, where
contestants make well-speci�ed choices under risk. The game involves very large
stakes, randomly drawn contestants, and ample opportunities for learning. Expected
utility (EU) theory gives a simple prediction of choice under weak conditions, as
one choice is always �rst-order stochastically dominating. We document frequent,
systematic and costly violations of dominance. Most alternative theories fail to add
explanatory power beyond the EU benchmark, but many contestants appear to have
a systematic expectation bias that can be related to Tversky and Kahneman�s (1973)
�availability heuristic�. In addition, there seems to be a stochastic element in choice
that is well captured by the so-called Fechner model.
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1 Introduction

Do people behave as rational (utility) maximizers when making risky choices? A battery
of experiments in economics and psychology over recent decades suggest not.1 Yet,
economists seem reluctant to abandon the rational maximization model; it still occupies
a core position in teaching and in research.

An important reason for the reluctance is a pronounced skepticism towards the gen-
eralizability of experimental �ndings to real-world decisions.2 First, the stakes involved
in the typical laboratory experiment are low, or even hypothetical. If stakes are trivial,
the reasoning goes, experiments do not provide information about agents�behavior when
faced with serious stakes in the ��eld�. Second, the subject pool may be nonrepresenta-
tive of the populations of interest because of (self-)selection of participants. Students, for
instance, are used extensively as subjects, and their behavior is not necessarily a good
predictor of the way other groups choose. Third, in real life people will learn to avoid
psychological biases, through repetition, observation and replication. (See Harrison and
List, 2004 for an extensive discussion of these and other objections to experiments.)

This paper examines risky-choice data from the Norwegian television game show
Joker, where all these issues can be addressed. It involves stakes of a magnitude that, to
our knowledge, is unparalleled in previous literature. Actual bets in our sample involve
an average stake of NOK289; 000 ($47; 000 / e35; 000 at the time of writing).3 Next,
participants are randomly drawn from a pool of up to �ve hundred thousand lottery
players (of a total population of about 4:6 mill.). Finally, the game is very simple and
provides ample opportunities for learning.

The standard expected utility (EU) framework gives a very strong and simple predic-
tion of players�choices in this game. One of the choices always �rst-order stochastically
dominates the alternative; hence we need not even assume risk aversion to predict choice
within the standard framework (a positive marginal utility of wealth su¢ ces). Despite
the weak conditions under which EU should predict choices, and despite the stakes
involved, one-third (or more in an alternative sample) of the contestants deviate from
these predictions. The average cost of this �irrationality�exceeds NOK100; 000 for these
participants.

The violations of the EU predictions are systematically related to the state variables
of the game. We utilize this nonrandomness and the stochastic properties of the game
to search for alternative choice hypotheses that can better explain our data.

Modifying preferences in ways suggested by so-called non-EU theories does not help.
The properties of our game are such that these models4 make the same predictions as

1See, e.g., Camerer (1995) and Starmer (2000) for reviews of the descriptive limitations of expected
utility theory.

2See Levitt and List (2006) for a comprehensive discussion of the generalizability of experimental
results to the real world.

3We de�ne �stake� as the di¤erence in payo¤ between a winning and a losing bet. Average pretax
wage income per person over 17 years was NOK188,300 in 2004. Lottery prizes are exempt from taxes.

4Our discussion on non-EU theories includes, but is not con�ned to, rank-dependent theory (Quig-
gin, 1982), regret theory (Loomes and Sugden, 1982), and cumulative prospect theory (Tversky and
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EU of players�choices. We then investigate whether contestants are prone to some of
the judgment biases discussed in the psychology literature (Kahneman et al., 1982).
We empirically test Rabin�s (2002) �quasi-Bayesian�model of the �gambler�s fallacy�
but �nd that it adds no explanatory power to the standard predictions. It does seem,
however, that many contestants have a systematic expectation bias that can be related
to Tversky and Kahneman�s (1973) �availability heuristic�.

The expectation bias can only explain some of the anomalies in our choice data. As
a �nal avenue of exploration, we discuss and test stochastic choice models. We �nd that
the so-called Fechner model (Fechner, 1860/1966; Becker et al., 1963) in combination
with a systematic expectation bias gives a good account of our data. Hence, we need
to incorporate both biased judgments and stochastic elements in choice to explain why
people make nonoptimal choices in our simple game with large stakes.

Several authors have recently utilized television game shows to observe real decisions
involving high stakes. One branch of this literature investigates games with strategic
decisions to test predictions from game theory. List (2006) uses data from Friend or
Foe? to explore strategic behavior in a natural prisoner�s dilemma game. Levitt (2004)
tests theories of discrimination using evidence from Weakest Link. Metrick (1995) uses
data from Jeopardy! to analyze players�abilities to choose best strategic responses, and
�nds this is more likely when the strategic problems are simpler. A series of papers
use data from the The Price is Right. Bennett and Hickman (1993) and Berk et al.
(1996) study a part of this show involving an auction, �nding that bidders often use
sub-optimal strategies. Tenorio and Cason (2002) use another part of the show to test
if behavior is consistent with a unique subgame perfect Nash equilibrium. They �nd
that contestants frequently deviate from this equilibrium, particularly when decisions
are di¢ cult. Finally, Berk and Hughson (2006) use the show to test if suboptimal
behavior in the �rst, easier part of it predicts behavior in the second, more di¢ cult part.
Surprisingly, they �nd that there is no consistency in the mistakes that are made in the
two parts of the game.

Another branch of the literature, more related to our natural experiment, examines
non-strategic risky choices. Gertner (1993), Beetsma and Schotman (2001) and Post
et al. (2006) use data from Card Sharks, Lingo and Deal or No Deal?, respectively.
All three papers suggest that the basic EU framework is inadequate to explain their
data, but their main focus is still on estimating risk preferences within the standard
framework.

Our study makes several contributions to the game show-based literature. First, our
game is much easier than all of the above. We need imposing only a very minimum
of assumptions to test standard theory in our model; i.e. that agents obey �rst-order
stochastic dominance. None of the shows described above entail �rst-order stochastically
dominant strategies. Non-violation of stochastic dominance is fundamental in many
theories of choice under risk (as we discuss in more detail later), and our game o¤ers
a unique opportunity to test this basic assumption when stakes are extremely large.
Second, in the other television shows, participants make their decisions in a TV studio

Kahneman, 1992).

3



in front of a large audience, which may itself bias the decisions in certain directions (cf.
List, 2006). Our contestants only appear on the show by phone and there is no studio
audience in Joker.5 Third, our game is unique in that participants are drawn randomly
from several hundred thousand lottery players. In other game shows contestants must
usually pass a pre-quali�cation or an interview. Participants are thus a selected group
of individuals who may di¤er in important ways from the general population (see again
List, 2006); this selection problem is much smaller in Joker. Finally, our paper di¤ers
from the others in that we test a range of alternative theories of risky choice to EU, to
check if they can better explain our data.

The remainder of the paper is organized as follows. In the next section, we describe
the game and our data. The predictions of the standard EU model are discussed in
Section 3, and we contrast these predictions with the data. Section 4 explores systematic
patterns among choices that deviate from the standard model. In Section 5, we examine
the various alternative choice hypotheses against our data. We discuss our results and
put forward some conclusions in Section 6.

2 Joker

In this section, we �rst explain how the bonus round of Joker is played and the underlying
statistical properties of the game. Next, we discuss the information that is provided to
the contestants and the possibilities for learning in the game. Finally, we provide a
description of our data. Note that we provide an economic model of the game in Section
3.

2.1 Rules and statistical properties

The �rst prize winner on Joker is drawn from a pool of participants who have registered
a game card number at �Norsk Tipping� (NT). One registration for one draw costs
NOK20, but participants can pay for as many registrations as they like. Draws are
conducted twice per week, on Wednesdays and Saturdays. In 2005, the average number
of participants was about 400,000 (200,000) on Saturdays (Wednesdays), and the average
bet was around NOK25 (1.25 registrations). According to a survey by NT, slightly more
than one million Norwegians over the age of 15 had played Joker at least once in the
last quarter of 2005. We remind the reader that Norway has a population of about 4:6
million. In case the �rst prize winner cannot be contacted by phone on the day of the
bonus round, a computer plays the game on behalf of the contestant (more on games
played by the computer below). Around 28 percent of the games in our sample were
played by a computer.

The winner of the �rst prize is given a minimum amount that he or she cannot
lose and then proceeds to a bonus round where the prize amount can increase in up

5 If anything, such �show e¤ects� should lead to a bias towards acting in a manner consistent with
the standard rational model. We �nd it very unlikely that contestants could improve on their future
well-being by making non-optimal choices in our game.
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to �ve discrete steps. In the bonus round, the players are presented with a row of �ve
open discrete numbers between 0 and 9. The contestants�task is to guess, sequentially,
whether numbers that are hidden to them are larger or smaller than the open number.
If they guess larger, they choose to go �up� relative to the open number, while they
choose �down� if they guess smaller. The hidden number is either a discrete number
between 0 and 9 or a joker. If the hidden number is a joker, the contestant wins the top
prize regardless of her choice, and the game is terminated. If a number is drawn and the
contestant�s guess was correct (wrong), her prize amount climbs one step up (down) the
prize ladder.6 Hidden number equal to the open number is regarded as a correct guess.7

The open numbers are drawn (with replacement) from a symmetric probability dis-
tribution, with the highest probability of drawing a 4 or a 5.8 On average, contestants
thus often have to base their decisions on numbers for which the probability of guessing
correctly is the smallest. More importantly, the sequence of hidden numbers is drawn
from an i:i:d:, uniform distribution. Obviously, the probability that a given number or a
joker is drawn depends on the number of jokers, and this is based on the following rule:
If the top prize of the bonus round is less than NOK1 million the game is played without
jokers. For games with a top prize between 1 and 2 million there is one joker among the
hidden numbers, while there are two jokers if the top prize is above 2 million.

As mentioned above, some bonus rounds are played by a computer on behalf of the
�rst prize winner. This computer is programmed to follow the expected prize-maximizing
strategy of choosing �up�when the open number is less than 5 and �down�otherwise
(see Section 3 below for more on payo¤-maximizing choices). Note that computer-played
bonus rounds are also shown on television, which may be important in allowing human
contestants to learn the game.

2.2 Contestants�information

Fifteen to 20 minutes prior to recording the television show, the �rst prize winner is
contacted by NT on the phone, and the basic rules of the game are explained to him
or her.9 In addition, the contestant is presented with the row of �ve open numbers and
the prize ladder for the game. Hence, these features are known prior to the recording of
the show. In addition, contestants are informed that the hidden numbers are randomly
drawn and may include jokers. We note that contestants are not explicitly informed that
draws are i:i:d: events (i.e., that hidden numbers are drawn with replacement), or that
hidden numbers have a uniform distribution. Moreover, they are not told how many

6When at the bottom of the prize ladder (the minimum prize), the prize amount is not reduced in
case of a wrong guess.

7 Instead of making the guess, the contestant may choose to quit at any stage of the game, taking the
prize amount he/she has won up to that point. In our sample of 356 human players, only one person
utilized this option! Given the stakes involved in the game, this is indeed puzzling from an economist�s
point of view, as only extreme low risk aversion among contestants can be reconciled with such behavior.
Estimation of risk aversion is not the topic of this paper, however, so we do not elaborate on this issue.

8The exact distribution from which the open numbers are drawn is Pr(5) = Pr(4) = 0:15, Pr(6) =
Pr(3) = 0:13, Pr(7) = Pr(2) = 0:1;Pr(8) = Pr(1) = 0:07, and Pr(9) = Pr(0) = 0:05.

9The show is broadcasted approximately one hour after it has been recorded.
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jokers that are present in their game, but as we show below, the presence of jokers is
irrelevant for the choices that we analyze.

Although these are potential de�ciencies in a contestant�s information set, the pub-
lic nature of the game implies that these properties may have been learned over time.
Moreover, in bonus rounds played by the computer, the host of the game show usually
explains to the viewers that the computer always �chooses the most logical alternative�.
To the extent that human contestants trust this information, they thus may have ob-
served a player who they know plays a sensible strategy. In any case, we return to the
issue of possible biased beliefs about the underlying stochastic process in Section 5.2.1
below.

2.3 Data description

Joker has been broadcast every Saturday from May 26, 2000 and every Wednesday from
June 5, 2002 on the public Norwegian Broadcasting Corporation (NRK). According to
NT�s statistics, the TV show had an audience aged 12 and above of more than 800,000
(450,000) on average for Saturdays (Wednesdays) in 2005. We use data up to June 30,
2006, generously provided by the Norwegian Gaming and Foundation Authority and by
the producer NT. The �rst source has protocols for most games and permitted us access
to these protocols. The remaining data were obtained by watching videotapes and DVDs
from NT. In all, we have information from 528 shows.10 The number of decisions is much
higher, of course, as each �rst prize winner makes up to �ve choices.

For each show, we recorded the date, the row of open numbers, the players�choices,
the revealed hidden numbers, the prize ladder, the gender of the �rst prize winner, and
whether the game was played by a human or the computer.11 To give an impression
of the stakes involved, Table 1 reports the average potential prizes for each step of the
prize ladder. A bet on step 4 of the ladder has on average involved a potential gain of
NOK525; 000 for a correct guess, and a loss of 431,000 for an incorrect guess.

Table 1 here

In what follows, we will mainly analyze decisions made by the human contestants,
and hence we divide our sample into games played by humans and those played by the
computer. Unfortunately, we lack this information for 33 of the shows, leaving us with a
sample of 495 shows for which we have information on all variables. Of these 495 bonus
rounds, 139 (28 percent) were played by the computer and 356 by humans.

In Table 2, we report some summary statistics for the two subsamples. We notice that
human contestants on average have won higher prize amounts than the computer, while
the computer has climbed further up the prize ladder. These observations are reconciled
by the fact that potential prizes have been somewhat smaller in the computer-played

10This is all the shows broadcast over this period, except four: Saturday draws # 1, 2 and 20 and
Wednesday draw # 162.
11 In addition, we collected data on players�county of residence. We did not utilize this information.
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rounds.12

Table 2 here

3 A benchmark model

3.1 A model of Joker

Although the rules of the game were described above, it is helpful for the analyses that
follow to recast the game by means of a formal model.

Let k = 1; 2; :: be an index for the sequence of bonus rounds in Joker. The decision
maker in round k faces the same decision problem repeatedly, and we index the repe-
titions by t = 1; ::; 5. At the start of each repetition, the decision maker can observe
the state variable �kt , which is drawn from a symmetrically distributed set � � f0; ::; 9g.
Upon observing �kt , the decision maker makes the guess y

k
t 2 f0; 1g, where ykt = 0 is

�down�and ykt = 1 is �up�.
The computer then makes a draw dkt 2 f0; ::; 9; Jg, where J denotes a joker. The

distribution of dkt is i:i:d: and uniform, but the probability that a given number or a joker
is drawn depends on the number of jokers m 2 f0; 1; 2g in round k. We assume that
the decision maker is generally unaware of the number of jokers in her game. The draw
dkt generates one of four possible observable states of the world (referred to as �signals�
below)13 skt 2 fN;P;E; Jg, where:

skt =

8>><>>:
N if dkt < �kt
P if dkt > �kt
E if dkt = �kt
J if dkt = J

:

The contestants can thus observe a sequence of signals whose probability distribution
depends on the underlying state but where the shock to the process dkt is i:i:d. Note that
the probability of signal J or E is independent of the state variable �kt , with Pr(J) =
m

10+m and Pr(E) = 1
10+m . The probabilities of N and P are state dependent, however,

and we have Pr(N j�kt ) =
�kt

10+m and Pr(P j�kt ) =
9��kt
10+m , respectively.

The payo¤to the decision maker depends on her guess and the realized signal. Denote
by �(ykt ; s

k
t ) the payo¤ at trial t in round k when y

k
t is chosen and s

k
t is realized. The

rules of Joker are such that at any trial t in any round k, payo¤s can be ordered as

12Recall that a computer plays when the �rst prize winner is unavailable on the phone, which happens
most frequently during the summer holiday season. Because lottery participation and hence prizes are
lower in this season, this largely explains the lower potential prizes under computer play.
13We use signal to avoid confusion between the �state variable�and the �state of the world�. Moreover,

past realized states of the world can serve as signals in the agent�s decision problem, as we will discuss
below.
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follows:

�(0; P ) = �(1; N) <

�(0; N) = �(1; P ) =

�(0; E) = �(1; E) � (1)

�(0; J) = �(1; J)

Note that at most three di¤erent payo¤s can materialize at any repetition. Note also
the symmetry properties: the payo¤ is independent of choice if J or E is realized and
is equal for correct or wrong guesses of N or P . The decision maker knows the payo¤
functions and their properties.

3.2 Choice: a benchmark

Let us assume initially that the contestant understands the structure of her decision
problem (in particular, the i:i:d and symmetry properties of the underlying distribu-
tions). This would be the case if she either correctly interprets the information provided
to her by NT or if she has understood (�learned�) the game by watching earlier bonus
rounds.

The natural benchmark for economists is to assume that players choose strategies to
maximize expected (risk-adjusted) payo¤s; i.e., that they act according to EU theory. A
contestant facing the state variable �kt would then choose y

k
t = 0, if:X

skt
Pr(skt j�kt )u(�(0; skt ) +W ) >

X
skt
Pr(skt j�kt )u(�(1; skt ) +W );

and ykt = 1 otherwise. Here, u(�) is a utility function and W is the contestant�s initial
wealth. Given the properties of the payo¤ functions explained above, the choice criterion
simpli�es to:

[Pr(N j�kt )� Pr(P j�kt )] [u(�(0; N) +W )� u(�(1; N) +W )] > 0:

If we assume that u0(�) > 0, the term in the last square brackets is positive. Hence, choice
is determined by the sign of the �rst brackets. Now, because Pr(N j�kt ) > Pr(P j�kt ) if and
only if �kt > 4:5, the EU model predicts y

k
t = 0 if �

k
t 2 f5; ::; 9g and ykt = 1 otherwise.

Note that this prediction requires only the assumption that there is a positive mar-
ginal utility of wealth. We do not even need to assume risk aversion. Choosing �down�
(�up�) is a �rst-order stochastically dominating strategy when �kt 2 (=2)f5; ::; 9g.

3.3 The benchmark and the data

Given the weak conditions required for the simple decision rule in the benchmark model,
the �rst question to be asked is whether deviations from this rule occur at all. The
numbers reported in Table 3 show that signi�cant deviations do indeed occur. First, as
we can see from the second column, 32:6 percent of all human contestants make at least
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one dominated choice. Note that this includes contestants who drew a joker in repetition
t = 1; ::; 4, and thus made fewer than �ve choices. In the third column of Table 3, we
report results for those contestants who made �ve choices. In this sample, 38:6 percent
violated stochastic dominance at least once. Second, deviations from the benchmark are
also highly signi�cant if we examine individual choices. Around 11 percent of all choices
violated stochastic dominance in our sample, a proportion that is clearly statistically
signi�cant.1415 This can also be illustrated by the fact that 57:2 percent (standard error
1:3 percent) of all choices were �up�in the full sample. By comparison, the EU model
predicts a proportion of 51:0 percent making �up� choices in the same sample. These
proportions are signi�cantly di¤erent at all levels of interest. Table 3 shows that the
same conclusion holds in the sample where all contestants make �ve choices.16

Table 3 here

Do these deviations matter? In Table 4, we report the average prizes obtained for
contestants who deviate from the rational benchmark. We also calculate what prizes
these players would have realized if they had followed the EU model. Participants who
do not draw a joker (third column) lose an average of NOK102; 000 by deviating from
the rational benchmark. (The loss is somewhat lower when we include those who do
draw a joker, because these contestants end up with the top prize regardless of choice.)
The aggregate net loss of the players who violate stochastic dominance is more than
NOK10:4 million.

Table 4 here

4 Patterns in dominated choices

The benchmark model does not square well with our data. There are frequent violations
of stochastic dominance, and these violations are costly. Our next step is to explore
if these �errors� are purely random or if they are systematically related to the state
variables �kt , the repetitions t, the sequence of bonus rounds k, stakes (prizes), or the
gender of the contestants.

4.1 State variables, repetitions, and errors

In Table 5, we report the distribution of choices and deviations from the benchmark
model conditional on the state variable �kt . There are three noteworthy features of this
14Note that Table 3 excludes choices based on �kt = 0 or 9. These open numbers really do not give

the contestant any choice at all, because it is impossible to draw a hidden number lower than 0 or larger
than 9. As a consequence, the host of the TV show often makes the �choice�for the contestant by telling
him or her to go �up�or �down�when they face �kt = 0 or 9, respectively.
15 Incidentally, the proportion of dominated choices is of the same magnitude that Chen et al. (2006,

table 2) �nd in their experiment with capuchin monkeys. However, dominance is much less obvious for
Joker contestants than for monkeys; we are not suggesting that lottery players and capuchins make the
same mistakes.
16Too many �up� choices indicates that deviations from rationality are systematically related to the

state variable �. We explore this relation in Section 4.1 below.
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distribution. First, there are generally more violations of stochastic dominance when
dominance is less obvious, i.e., when the probability of guessing correctly is smaller.
Whereas very few violate dominance at the tails of the state variable distribution, there
is a signi�cant proportion of dominated choices at the center. Second, the distribution
of �errors�is centered around �kt = 5, rather than around the mean of 4:5. As many as
38 percent of choices conditional on �kt = 5 deviate from the rational choice of picking
�up�. Indeed, 56 percent of all errors in our sample are made when the open number
is 5. Third, the distribution of errors is fairly symmetrical around 5. An implication
of the last two observations is that there are substantially more dominated choices in
the upper half of the state variable distribution (�kt 2 f5; ::; 9g), than in the lower half.
Close to 80 percent of errors occur in the upper half. This explains the �nding of too
many �up�choices reported in Table 3 above.

Table 5 here

We next check if the propensity to make a dominated choice is related to the order of
decision. In Table 6, we report the distribution of errors conditional on the repetition t.
The table does not reveal any clear pattern in violations of dominance across repetitions.
The error fractions appear somewhat higher at t = 4 and 5, but as shown in the lower
row, statistically we cannot reject that the propensity to violate dominance is equal at
all ts.

Table 6 here

4.2 Do stakes, learning or gender matter?

It has been claimed that the observed failures of rational choice models are attributable
to costs of cognitive e¤orts and will thus disappear with proper incentives (e.g., Smith,
1985). Compared with the typical possibilities for gains and losses in controlled choice
experiments, all bonus rounds in our data involve extremely high stakes, so the proper
incentives should be present. Moreover, the simplicity of the game suggests that the
costs of thinking should be moderate. Yet, as we have seen, there is a signi�cant number
of expensive deviations from the rational benchmark model. Our data allow us to push
the role of stakes further. There is substantial variation in prizes among our bonus
rounds. We measure the stake in a given bet as the di¤erence between the prizes in the
cases of correct and wrong guesses. In our sample with human contestants, the average
size of this stake is just over NOK289; 000. The standard deviation is 300; 000, while the
minimum and maximum stakes are 26; 000 and 2; 778; 000, respectively. This variation
allows us to test if stakes matter for the probability of choosing rationally within our
sample.

As we mentioned in Section 2.2, the public nature of the television show gives con-
testants the opportunity to learn how to make sensible choices. In particular, the fact
that a rationally programmed computer plays a substantial fraction of the games should
allow later human players simply to replicate the computer�s choices. To check whether
this type of learning takes place, we simply test whether the propensity to make irra-
tional choices depends on the sequence k. Learning or replication would imply that the
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propensity to deviate from the benchmark model decreases as the history of the game
show unfolds.

Certain laboratory experiments have found that female participants have a signi�-
cantly higher propensity to deviate from the rational choice model than do male partici-
pants (see, e.g., Gal and Baron, 1996; West and Stanovich, 2003). Women comprise 48:7
percent of human bonus round players in our sample. We test if there are signi�cant
di¤erences in deviation from rationality across genders in our natural experiment.

Table 7 here

In Table 7, we report probit estimates for the relationship between the probability
of deviating from the benchmark model and stakes, the sequence k, and the gender of
the contestant. In addition, the last column includes the state variables �kt as control
variables, but their inclusion has only minor e¤ects on the estimates of the other coe¢ -
cients. First, we see that the probability of picking the dominated option is una¤ected
by the stakes involved in the bet. Thus, despite a much larger variation in payo¤s than
previously examined, the adherence to rational choice seems to be una¤ected by changes
in stakes. Second, the gender variable is insigni�cant, so choices do not seem to di¤er
between men and women. Third, the coe¢ cient for the index for bonus round is highly
signi�cant. There are thus fewer errors over time in our sample, which could plausibly
be because of learning. Note, however, that the magnitude of this e¤ect is small. The
estimated marginal e¤ects from the probit model tells us that by adding an additional
bonus round, the probability of making a nonoptimal choice decreases by 0:02 percentage
points.

4.3 Choice reversal

One of the striking �ndings in controlled choice experiments is the phenomenon of �choice
reversal�. When confronted with exactly the same choice problem separated by a short
time interval, the proportion who choose di¤erently in the two cases has �often found
to be of the order of 20 to 30 percent� (Loomes et al., 2002). Our data permit us to
investigate the degree of reversal under stochastic dominance and high stakes.

We consider contestants who have chosen at least twice based on the same state vari-
able. We classify behavior into three categories: dominant, if choice obeys dominance in
all identical situations; violation, if choice goes against dominance in all identical situa-
tions; and reversal, if the contestant switches alternatives at least once under identical
circumstances. Table 8 reports the numbers and frequencies of the three categories.

Table 8 here

There are several noteworthy regularities in Table 8. First, the overall �error�pro-
portion as evaluated against the benchmark model is higher than in the full sample
(lower two rows); 14:8 percent of choices violate dominance in this sample. Second, the
vast majority of dominated choices occur in conjunction with choice reversal. Only at
the state variable �kt = 5 is there a signi�cant proportion who consequently choose the
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dominated alternative. Third, when facing the state variable � = 5 more than once,
there is a minority of contestants who obey dominance. Fourth, the overall reversal rate
is 18:5 percent, but it varies considerably between �s. Except at the tails of the state
variable distribution, where violations are rare anyhow, the rate is in line with reversal
rates in controlled experiments. Note, however, that earlier experiments rarely operated
with a stochastically dominating option. An exception is Loomes et al. (2002). Based
on their Tables 2a and 2b (rows 41�45 and 86�90), we can compute a reversal rate of
2:6 percent in their dominance problems. In light of this and the high stakes involved,
our rates of reversal stand out as high.

4.4 Summarizing the data

The �ndings above can be summarized as follows.

1. Contestants frequently violate �rst-order stochastic dominance in risky choices.

2. These violations are costly in terms of forgone prizes.

3. Stakes have no e¤ect on the probability of following the prize-maximizing strategy.

4. The fraction of violations shows a signi�cant but slow decline over time.

5. The propensity to choose dominated options is systematically related to the state
variable �.

6. The reversal rate of contestants�choices when facing two or more identical gambles
is around 20 percent.

7. There is no obvious pattern in violations across repetitions for individual players.

The natural question that emerges from these �ndings is whether the observed choices
can be reconciled with other plausible behavioral hypotheses.

5 Alternative choice hypotheses

We are obviously not the �rst to �nd that real-world decisions under risk deviate from
the EU model, although high stakes and �rst-order stochastically dominating options
perhaps make our results particularly noteworthy. As discussed in the Introduction,
there is a large experimental literature in psychology and economics that demonstrates
deviations from EU theory, and part of this literature proposes alternative hypotheses
of choice under risk. In behavioral economics, deviations from EU predictions are as-
cribed to biases in people�s probability judgments and/or to other preferences than the
EU framework. A related but conceptually somewhat di¤erent approach is stochastic
choice models, in which random �errors�are built into the process of choice. All three
approaches may potentially better explain our data than EU, and so we discuss them in
turn.
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5.1 Non-EU preferences

Since the late 1970s, there has been an explosion of work on so-called non-EU theories
that attempt to do a better job of matching experimental evidence. Indeed, a challenge
in searching for alternative models that might better explain our data is that so many
alternatives exist.17 Starmer (2000, p. 332) starts his survey by informing readers that
the �so-called non-expected utility models now number well into double �gures�. The
number has risen further since the publication of Starmer�s survey.

That said, the �ndings above and the statistical properties of Joker give clues to
which models can potentially account for our data. Most importantly, the models must
allow violation of stochastic dominance, as the frequent dominance violations are the
most puzzling feature in our data. This permits us to exclude all models that Starmer
(2000, Section 4.1) labels conventional non-EU theories; these are models that build on
preferences that respect stochastic dominance. They include, but are not con�ned to,
implicit EU (Chew, 1989), disappointment aversion (Gul, 1991), and rank-dependent
expected utility theory (Quiggin, 1982). An important nonconventional contribution
that can be excluded on the same basis is similarity-based theory (Rubinstein, 1988).

We now proceed to discuss two well-known non-EU models that in principle do allow
for violations of stochastic dominance.

5.1.1 Regret theory

One model that can potentially account for the choice of stochastically dominated options
is regret theory (Loomes and Sugden, 1982). Consider a contestant facing the state
variable �kt = 5. He/she would potentially experience �regret� if he/she chose �down�,
as the benchmark model predicts, and a signal skt = P is drawn. Rationally anticipating
this possible regret, the contestant might prefer to go �up� instead. As we next show,
however, the symmetrical properties of the payo¤s in Joker rule out the possibility that
regret theory can explain the violations of dominance observed in our data.

According to regret theory, a contestant facing the state variable �kt would select
yt = 0 if: X

skt
Pr(skt j�kt ) [�(0; skt ); �(1; skt )] > 0;

and yt = 1 if this expression is negative. The function  (�; �) is the regret/rejoice
function, which, among other properties, is assumed to be skew symmetric. This means
that  (a; b) = � (b; a) and  (a; a) = 0, for all a; b. Using the properties of the payo¤
functions in (1), the restriction above simpli�es to:

 [�(0; N); �(1; N)]
�
Pr(N j�kt )� Pr(P j�kt )

�
> 0:

The regret/rejoice function is de�ned as:

 [�(0; N); �(1; N)] �M [�(0; N); �(1; N)]�M [�(1; N); �(0; N)];
17 In a recent discussion of behavioral economics, Fudenberg (2006) labels this phenomenon �choice

overload in modeling choice�.
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where M(�; �) is increasing in its �rst argument and decreasing in its second. Because
�(0; N) > �(1; N), we thus have that  [�(0; N); �(1; N)] > 0. Hence, the lower in-
equality above holds for �kt 2 f5; ::; 9g. Although regret theory in principle allows for
violations of stochastic dominance, it does not account for the deviations of the EU
model that we observe in Joker.

5.1.2 Prospect theory

Of all non-EU models of choice under risk, Kahneman and Tversky�s (1979) prospect
theory is clearly the most widely discussed. In its original form, prospect theory models
choice as a two-phase process. In the �rst phase, available options (�prospects�) are
possibly �edited�by one or more decision heuristics. We will return to possible decision
biases due to editing below, but for now we assume that the contestant correctly evaluates
the options available to her in Joker.

In the second phase of the decision process, choice is determined by a preference
function that is quite di¤erent from EU preferences. The generalized version of this
preference function (to handle gambles with more than two outcomes; Tversky and
Kahneman, 1992), can be applied to Joker as follows. A contestant facing the state
variable �kt would choose y

k
t = 0 if:X

skt
�[Pr(skt j�kt )]v[�(0; skt )� ��] >

X
skt
�[Pr(skt j�kt )]v[�(1; skt )� ��]; (2)

and ykt = 1 otherwise. In (2), v[�] is the �value function�, which unlike an utility function,
is de�ned over gains and losses relative to a reference point rather than over total wealth.
In our setting, the reference point �� is most naturally interpreted as the prize that the
contestant has achieved up to repetition t. Note that, among other properties, v[�] is
assumed to be strictly increasing. The function �[�] is a transformation function from
probabilities to decision weights. Again, various assumptions on the shape of �[�] are
imposed in the literature. For us, it is su¢ cient to note that the function is assumed to
be strictly increasing.

The structure of the payo¤s in Joker allows us to simplify considerably the choice
rule in (2). Given the properties of (1), prospect theory predicts that contestant k will
choose ykt = 0 at repetition t if:

f�[Pr(N j�kt )]��[Pr(P j�kt )]g fv [�(0; N)� ��]� v [�(1; N)� ��]g > 0:
The term in the last braces is positive because v[�] is an increasing function. The �rst
term is positive if �kt 2 f5; ::; 9g and negative otherwise. Hence, this version of prospect
theory (i.e., without biases in the editing phase) gives the same predictions of choice as
does the EU theory in our natural experiment and does not add explanatory power for
our data.

Simply modifying preferences (or decision weights) in manners suggested by central
non-EU models does not help in matching our evidence; they give the same predictions
as EU in our game. We emphasize, however, with particular reference to prospect theory,
that we have not allowed possible psychological biases to play a role so far. It is to such
biases that we now turn our attention.
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5.2 Biases in judgment

Psychologists have identi�ed a number of biases that lead people to make errors in
judgment under uncertainty. (See, e.g., the book-length overview in Kahneman et al.,
1982, or the surveys by Camerer, 1995 and Rabin, 1998). A broad discussion of all these
possible biases is beyond the scope and beside the point in our context. Rather, we
explore at some length two biases that we view as potentially relevant in matching our
data.

5.2.1 The gambler�s fallacy

One of the essential characteristics of the decisions in Joker is that they involve a few re-
peated choices. As we explained in Section 2.2, bonus round contestants are not explicitly
informed that draws of dkt are independent. Moreover, even if they do understand that
draws are independent, experiments in psychology and economics indicate that people
exaggerate how likely it is that a small sample resembles the overall population from
which it is drawn (see Rabin, 2002 for a review of the evidence). Tversky and Kahneman
(1971) labeled this phenomenon the �belief in the law of small numbers�. Rabin (2002)
and Rabin and Vayanos (2005) model this belief by postulating that agents treat i:i:d:
draws as draws without replacement, while updating as Bayesians in other respects.
Such agents are subject to the �gambler�s fallacy�, thinking that early draws of one
signal increase the probability of next drawing other signals.

We consider two alternatives for modeling the gambler�s fallacy in Joker. First, we
assume that some contestants think that draws of dkt are not independent but rather are
drawn from an urn without replacement. Second, we allow contestants to believe falsely
that if skt = P , it increases the probability that skt+1 = N for a given state variable
�kt+1.

18 These approaches are clearly related, but as we will see, they have somewhat
di¤erent empirical predictions.

Let us start with the former approach. We assume that a contestant does understand
that his/her bonus round k starts with a full urn of hidden numbers but that numbers
may not be replaced within his/her round. Following Rabin and Vayanos (2005), agents
subject to the gambler�s fallacy mistakenly believe that the repetitions fdkt gt=1;::;5 are
not i:i:d:, but follow the process:

dkt = edkt � � t�2X
h=0

�hdkt�1�h; t = 2; ::; 5;

dk1 = edk1:
The sequence fedkt gt=1;::;5 is treated as i:i:d: by the contestants, but we allow for a biased
expectation of this shock. Hence, players may enter the bonus round with the wrong
prior on the expected value of hidden numbers, in addition to the wrong model for

18We thus assume that a signal skt = E does not a¤ect contestants�probability assessment of skt+1.
Recall that the game is terminated if skt = J is realized, so this signal is irrelevant in terms of (non-
Bayesian) updating.
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updating expectations. The parameter � 2 [0; 1) characterizes the strength of the belief
in the gambler�s fallacy. When � = 0, the player correctly treats the sequence of hidden
numbers as i:i:d. They may still deviate from the benchmark model if E[edkt ] 6= 4:5,
however. The parameter � 2 [0; 1) characterizes the duration of the gambler�s fallacy. If
� = 0, the player believes the hidden number dkt ought to counteract only the number
from draw t� 1. When � ! 1, the player believes that dkt will counteract the average of
earlier drawings in round k.

Based on these premises, we can modify the benchmark model for player behavior
in our game. Contestants who maximize the perceived expected prize will follow the
decision rule:

ykt =

�
0 if Ekt�1[d

k
t ] < �kt

1 if Ekt�1[d
k
t ] > �kt ;

;

where Ekt is the contestant�s k expectation at repetition t. If the contestant is subject
to the gambler�s fallacy, we can write this as:

ykt = 0 if Ekt�1[edkt ]� � t�2X
h=0

�hEkt�1[d
k
t�1�h] < �kt ; t = 2; ::; 5;

yk1 = 0 if Ek0 [edk1] < �k1:

With � = 0 and a correct prior, we are back at the benchmark model. Because players
treat the shock ed as i:i:d: and past realizations of d are fully observable, the model yields
the following testable restrictions on decisions for each repetition:

yk1 = 0 if Ek[edk1] < �k1

yk2 = 0 if Ek[edk1]� �dk1 < �k2

yk3 = 0 if Ek[edk1]� �dk2 � ��dk1 < �k3

yk4 = 0 if Ek[edk1]� �dk3 � ��dk2 � ��2dk1 < �k4

yk5 = 0 if Ek[edk1]� �dk4 � ��dk3 � ��2dk2 � ��3dk1 < �k5:

The second approach to modeling the gambler�s fallacy follows the same procedure
but replaces lagged values of dkt with lagged values of realized signals s

k
t . If there are

systematic e¤ects of either lagged hidden numbers or signals, it could thus be interpreted
as support of Joker contestants being subject to the gambler�s fallacy.

A simple �rst way to investigate the empirical content of this hypothesis is to examine
the distribution of dominated choices across repetitions t = 1; ::; 5, as we did in Table
6. If the gambler�s fallacy is important in explaining our data, we would expect to
see variation in the propensity to choose nonoptimally across repetitions. However, as
mentioned above, we cannot reject the hypothesis that �error� proportions are equal
across ts; see the lower row of Table 6. Moreover, we see that violation of dominance is
of the same order at t = 1, as for the later repetitions. Thus, we can clearly reject the
hypothesis that contestants make their choices at t = 1, based on maximization with
unbiased expectations.
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We now proceed to explore in more detail the implications of the gambler�s fallacy
for repetitions t = 2; ::; 5. If there is any empirical backing for the �rst model above,
choices made at repetitions t = 2; ::; 5 should be systematically related to the history
of hidden numbers or signals for that round. In Table 9, we present the results from
estimating a probit model with ykt as the dependent variable and the rational choice
plus the sequence fdkt�hgh=1;::;t�1 as explanatory variables, for t = 2; ::5. Only one of 10
estimated coe¢ cients on lagged ds is statistically signi�cant. Moreover, the �2-test of
no e¤ect on lagged hidden numbers cannot be rejected at any of the repetitions.

Table 9 here

In Table 10, we report results from similar estimations with the history of realized
signals as explanatory variables. None of the estimated coe¢ cients on lagged signals
is even close to being signi�cant. There is thus no evidence to support the gambler�s
fallacy story in our data.

Table 10 here

5.2.2 A focal point bias: Is 5 a �special number�?

One way to describe the contestants�task in Joker is that they should �nd the midpoint
between 0 and 9. Once they realize that the midpoint is 4:5, the task of estimating
whether the probability of drawing dkt > �kt is larger than drawing d

k
t < �kt should be

manageable. However, the spike of errors at �kt = 5 reported in Table 5 indicates that
many participants fail to calculate the midpoint correctly. Indeed, if all contestants
erroneously believed that 5 is the midpoint, we should have observed a deviation rate
of 50 percent at �kt = 5. Although the actual error rate of 38 percent (reported in
Table 5) is signi�cantly di¤erent from 50, it is certainly closer to to this rate than to
the predicted rate of zero. Moreover, the large di¤erence in error rates between �kt = 4
and 5 also indicates that something awkward is happening at 5. When facing a 4 or a 5,
players are essentially facing identical choices between gambles, yet the error propensity
is more than four times as high at �kt = 5.

One way to interpret this �nding is that many contestants are subject to a �focal
point bias�. The digit 5 may stand out as the number that most easily comes to mind
when one is estimating the midpoint between 0 and 9. Epstein (2006, p.360) claims
that �the evidence that many individuals are misled by focal points in the simplest of
calculations is conclusive�, but he provides no references for this evidence. A focal point
bias may be related to Tversky and Kahneman�s (1973) �availability heuristic�whereby
people disproportionately weight salient instances or associations in judgment, even if
they have better sources of information.

In any case, we believe that some choice errors in our data are due to biased expecta-
tions among some of the contestants, falsely believing that E[dkt ] = 5. If we impose this
biased expectation on the standard model, it predicts a fraction of 58:8 percent of �up�
choices in our sample of human contestants. This share is not signi�cantly di¤erent from
the actual �up�fraction 57:2 percent reported in Table 3.

17



In this sense, taking into account the focal point bias improves the overall match
between the benchmark and our data. However, our focal point bias hypothesis can
only explain the 56 percent of errors that occurs at �kt = 5. It does not explain the
remaining 44 percent of deviations from the benchmark, nor does it explain the high
rates of reversal in choice at other state variables than 5 (see Table 8). Hence, we now
discuss models that can potentially account for these regularities.

5.3 Stochastic choice

Some decision theorists have traditionally studied choice behavior as a stochastic rather
than as a deterministic phenomenon (e.g., Bush and Mosteller, 1955). Recently there has
been a revival of interest among economists in modeling the stochastic element in decision
making (see, e.g., Loomes et al., 2002). Given the extensive violations of dominance and
reversal in choice documented in Section 4.3, it is conceivable that stochastic choice
models can add explanatory power to our data.

Three alternative approaches to the modeling of stochastic choice have been discussed
in the recent literature. Harless and Camerer (1994) assume that any decision reveals
true preferences (as de�ned by a deterministic theory) with probability 1�e, but (because
of, e.g., a lapse of concentration) there is some constant probability e that the individual
chooses at random. This �constant error�model has been rejected in recent tests of
stochastic choice models (Ballinger and Wilcox, 1997; Carbone, 1998). Moreover, the
systematic pattern of dominance violations across state variables �kt documented in Table
5 indicates that decision errors in our data are not due mainly to �trembles�. Hence we
do not follow this approach further.

A second approach to stochastic choice is the �random preference�model by Loomes
and Sugden (1995). It assumes that there is a set of alternative preference relations for
each decision maker and that he/she chooses based on one of these relations selected
at random. A problem with this approach for our data is that choice is not stochastic
in problems involving stochastic dominance; it predicts that the dominating option is
chosen with probability one. The extensive violations of dominance in our data thus
suggest that random preferences are not what is behind the results.

This leaves us with the third alternative of stochastic choice models, the �Fechner
model� (Fechner 1860/1966; see also Becker et al., 1963 and Hey and Orme, 1994).
Following Hey and Orme, this model assumes that a contestant facing �kt will choose
ykt = 1 if:

V (1j�kt )� V (0j�kt ) + "kt > 0;

where V (:j�kt ) maps choices into values so that its speci�c form corresponds to a given
deterministic theory. The error term " is a continuous random variable, symmetrically
distributed around zero. In general, the contestant may deviate from the predictions
of the deterministic theory with a large enough draw of "kt with the right sign. In
particular, the smaller the di¤erence in values assigned to the two choice options by
the deterministic theory, the more likely it is that the predictions of this theory will be
overturned by the error term. Hey and Orme (1994) interpret the randomness in this
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model as a type of calculation error by the decision maker.
Regardless of preferred deterministic core theory, the Fechner model can in principle

explain several of the data regularities discussed in Section 4. It can accommodate
both high rates of dominance violation and a high reversal rate if the variance of " is
su¢ ciently large.19 Moreover, it generally implies more violations of dominance when
the dominating alternative is less obvious. This is what we observed in Table 5 above.
Finally, this model does not predict any particular systematic pattern of errors across
repetitions; random calculation errors might as well occur at t = 1 as at t = 5. Again,
this is what we saw in Table 6.

A simple empirical approach to the Fechner model in our game is to formulate the
following linear model. Let the latent variable yk�t represent the perceived gain for
contestant k if she chooses ykt = 1 at repetition t. In the Fechner model:

yk�t =
8X
i=1

�i�
k
it + "

k
t ; (3)

where �kit = 1 if i = �kt and 0 otherwise, while "
k
t is a standard normal variable assumed to

be uncorrelated with the �kits. The expected gain for a given �
k
it is accordingly E[y

k�
t j�kit =

1] = �i, i = 1; ::; 8. The Fechner model thus implies that the index of the expected gain
�i is positive for i 2 f1; ::; 4g and negative when i 2 f5; ::; 8g. Importantly, it also implies
the following symmetry restrictions:

j�1j = j�8j , j�2j = j�7j , j�3j = j�6j , j�4j = j�5j : (4)

Under the speci�ed assumptions, the parameters can be estimated by a probit model
corresponding to equation (6), with choice ykt as the dependent variable. The symmetry
restrictions can be imposed and tested by means of a Wald test.

Table 11 here

Table 11 reports the estimated �is for the general model. Wald test a gives the
�2(4) test statistic for the restrictions in (4), and these are clearly rejected. This is not
particularly surprising, given the much larger error fraction at �kt = 5 compared with the
other values of state variable. Recall also our discussion above on the possibly biased
midpoint estimates by the contestants. If players are prone to this bias, the Fechner
model would predict that errors are symmetric around 5 rather than 4:5. Hence, a
combination of the Fechner model and the focal point bias implies the joint restrictions:

j�2j = j�8j , j�3j = j�7j , j�4j = j�6j : (5)

The Wald test b in Table 11 shows that we cannot reject these restrictions.
19Loomes et al. (2002) and Loomes (2005) conclude that the Fechner model cannot explain the dataset

in Loomes et al. because it contains high rates of reversal but low rates of dominance violation. Table
8 shows that these rates are of similar magnitude in our data, providing some support for the Fechner
model.
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It thus seems that we need to rely on both a simple judgment bias and a stochastic
element in choice to give a satisfactory account of our data. Many contestants seem to
believe erroneously that 5 is the midpoint in the distribution of hidden numbers, and in
addition, many violate dominance and reverse their choices in manners consistent with
the Fechner model.

6 Discussion and conclusions

Around one-third of the participants in our natural experiment violate �rst-order sto-
chastic dominance in large stake choices. Variation in stakes is unrelated to the propen-
sity of violating dominance. When facing identical gambles (at least) twice, contestants
choose di¤erently in around 20 percent of the cases. Dominated choices are more likely
to occur when dominance is less obvious, but there is a peculiar concentration of errors
when the state variable takes the value 5. The fraction of violations of dominance shows
a statistically signi�cant but very slow decline over time.

With reference to a famous Monty Python sketch, Rabin and Thaler (2001) compare
the issue of pointing out further failures of the expected utility model to beating a dead
parrot (a �Norwegian Blue�). In their view, EU is an �ex-parrot�, far beyond the point
of cure. In one way, our paper simply emphasizes Rabin and Thaler�s point. We have
looked at a natural experiment where the amounts at stake are very large and the task
is easy, yet even the most basic prediction of EU fails to give a satisfactory account of
choice. The behavior of Norwegian lottery players seem to con�rm that the Norwegian
Blue is indeed dead.

On the other hand, the problem in explaining our choice data is not con�ned to the
EU model. First, and fairly obviously, non-EU theories that respect stochastic domi-
nance are not able to explain our data. Second, the simplicity of the game and symmetry
of the payo¤s implies that neither regret theory nor prospect theory can account for the
frequent violation of stochastic dominance found in the data. Third, judgment bias in
terms of �belief in the law of small numbers� framed as the �gambler�s fallacy� does
not seem to add explanatory power. Fourth, two versions of stochastic choice theories,
the �constant error�and the �random preference�models, are also inconsistent with the
patterns in our choice data. In contrast, a third stochastic choice model, the Fechner
model, augmented by a deterministic judgment bias in the expected median of our choice
problem, matches our data quite well.

Theories of choice under risk generally model the decision maker as a calculating
agent. The somewhat negative message from our natural experiment is that people
seem to make rather crude and erroneous judgments of important parameters, even
when the choice problem is simple and it involves large monetary stakes. To some extent
these errors re�ect mistakes in calculations, as postulated by the Fechner model. More
importantly, however, we believe that many non-optimal decisions in our data occur
because agents do not calculate. This is particularly visible when the state variable
takes the values 4 and 5, since players then face identical choices between gambles. Yet,
the error propensity is more than four times higher at 5 compared to 4. Instead of doing
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the simple calculation required to realize that 4:5 is the middle of the state variable
distribution, many use 5 as focal point for the mean of the distribution. It seems likely
that relying on focal points or rule of thumbs, instead doing careful calculations, may be
even more frequent in common economic situations with much more complicated choice
problems.
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Table 1: Average potential prizes and stakes at different steps of the
prize ladder.

Step, prize Average potential Increase
ladder prize
0 (prize �oor) 375,000 �
1 428,000 103,000
2 676,000 197,000
3 920,000 244,000
4 1,351,000 431,000
5 (top prize) 1,876,000 525,000
Note: Based on all 528 bonus rounds. Amounts

in Norwegian kroner.

Table 2: Human- and computer-played rounds.
Humans Computer

Bonus rounds 356 139
Choices 1,549 614
Prize, average 1,310,000 1,256,000
Step, average 3.40 3.45
Note: Step, average shows the average �nal

step on the prize ladder.
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Table 3: Summary statistics, human contestants.
Full sample Sample with

5 repetitions
Bonus rounds 356 264
Players deviating 116 102
from benchmark
Proportion 32.6% 38.6%
(standard error) (2.5%) (3.0%)
Choices 1,375 1,176
Choices deviating 149 133
from benchmark
Proportion 10.8% 11.3%
(standard error) (0.8%) (0.9%)
Predicted �up�fraction 51.0% 50.5%
Actual �up�fraction 57.2% 56.9%
(standard error) (1.3%) (1.4%)
Note: Full sample refers to all rounds played by human

contestants. Sample with 5 repetitions excluding players

who drew a joker on t = 1; ::; 4. Predicted �up�fraction
shows share of y = 1 choices if all players followed the
benchmark model. Actual �up�fraction shows the actual

shares of y = 1 choices in the two samples.

Table 4: Prizes for contestants who deviate from the benchmark.
Full sample Sample with

5 repetitions
Bonus rounds 116 102
Avg. realized prize 1,059,000 922,000
Avg. �optimal�prize 1,149,000 1,024,000
Avg. loss 90,000 102,000
Aggregate loss 10.4 mill. 10.4 mill.
Note: Avg. �optimal�prize shows the average take-

home prize that players would have achieved by following

the benchmark model.
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Table 5: Deviation from benchmark model, human contestants.
� 1 2 3 4 5 6 7 8 Sum
Choices 121 171 185 222 221 189 137 129 1,375
Deviations 2 2 8 19 84 20 9 5 149
Proportion 1.7% 1.2% 4.3% 8.6% 38.0% 10.6% 6.6% 3.9% 10.8%
Con�dence 0.2% 0.1% 1.9% 5.2% 31.6% 6.6% 3.0% 1.3% 9.2%
interval 5.8% 4.2% 8.3% 13.0% 44.8% 15.9% 12.1% 8.8% 12.6%
Note: Choices are decisions based on � by human contestants. Deviations are the numbers of decisions
that do not follow the prediction from the benchmark model. Exact binomial con�dence intervals.

Table 6: Deviation from benchmark at repetition t, human contestants.
t 1 2 3 4 5
Choices 315 294 274 259 233
Deviations 31 30 24 33 31
Proportion 9.8% 10.2% 8.8% 12.7% 13.3%
(s.e.) (1.7%) (1.8%) (1.7%) (2.1%) (2.2%)
�2-test for proportions equal across ts: 4.52 (0.39)
Note: s.e. is standard error. Number in parenthesis for �2-test
is p-value.

Table 7: Effects of stakes, sequence and gender. Deviation from bench-
mark is dependent variable. Probit, marginal effects.

Stakes 0.000027 0.000026
(0.000027) (0.000021)

k (sequence #) -0.000193 -0.000177
(0.000059)�� (0.000048)��

Gender -0.003521 -0.001532
(0.017960) (0.015158)

Controls for �kt No Yes
Choices (obs.) 1371 1371
Pseudo R2 0.013 0.202
Note: Robust standard errors in parenthesis, corrected

for clustering at the level of individual players.
�� denotes signi�cance at 1%. Controls are
state variables (�).
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Table 8: Decisions with two or more choices at the same state variable.
� 1 2 3 4 5 6 7 8 Sum
Bonus rounds 17 28 27 44 46 29 17 14 222
Dominating at � 15 28 22 34 20 23 13 13 169
proportion 88.2% 100% 81.5% 77.3% 43.5% 79.3% 76.5% 92.9% 75.7%
Violation at � 0 0 0 1 10 1 1 0 13
proportion - - - 2.3% 21.7% 3.4% 5.9% - 5.9%
Reversal at � 2 0 5 9 16 5 3 1 41
proportion 11.8% - 18.5% 20.5% 34.8% 17.2% 17.6% 7.1% 18.5%

Choices at � 34 58 59 93 95 63 35 29 466
Deviations 2 0 5 11 36 8 6 1 69
proportion 5.9% - 8.5% 11.8% 37.9% 12.7% 17.1% 3.4% 14.8%
Note: Bonus rounds are those in which a human contestant chooses at the same � at least twice.
Choices at � are the numbers of decisions at � in those rounds.

Table 9: Gambler�s fallacy I. Choice is dependent variable. Probit.
Repetition t = 2 t = 3 t = 4 t = 5

Optimal choice 3.211 2.873 2.778 2.472
(0.295)�� (0.214)�� (0.238)�� (0.211)��

dkt�1 0.008 0.005 0.023 0.024
(0.033) (0.036) (0.038) (0.036)

dkt�2 -0.006 -0.078 0.032
(0.036) (0.037)� (0.034)

dkt�3 -0.014 0.017
(0.036) (0.036)

dkt�4 0.031
(0.035)

Constant -0.999 -1.313 -0.585 -1.422
(0.186)�� (0.278)�� (0.288)�� (0.368)��

Choices 330 315 284 264
Pseudo R2 0.62 0.61 0.54 0.50
�2-test, no e¤ect 0.06 0.04 4.77 2.32
of lagged ds (p-value) (0.81) (0.98) (0.19) (0.68)
Note: Sample is all 356 rounds with human contestants. Robust standard

errors in parentheses, corrected for clustering at the level of individual players.
� denotes signi�cance at 5%; �� at 1%.
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Table 10: Gambler�s fallacy II. Choice is dependent variable. Probit.
Repetition t = 2 t = 3 t = 4 t = 5

Optimal choice 3.217 2.860 2.694 2.562
(0.289)�� (0.211)�� (0.235)�� (0.219)��

skt�1 0.124 -0.153 0.010 0.086
(0.215) (0.207) (0.206) (0.208)

skt�2 0.008 -0.236 0.244
(0.212) (0.206) (0.208)

skt�3 0.033 -0.010
(0.209) (0.207)

skt�4 0.393
(0.213)

Constant -1.032 -1.227 -0.767 -1.392
(0.172)�� (0.278)�� (0.221)�� (0.294)��

Choices 330 315 284 264
Pseudo R2 0.62 0.61 0.53 0.51
�2-test, no e¤ect 0.33 0.55 1.31 4.76
of lagged ds (p-value) (0.56) (0.76) (0.73) (0.31)
Note: Sample is all 356 rounds with human contestants. Robust standard

errors in parentheses, corrected for clustering at the level of individual players.
� denotes signi�cance at 5%; �� at 1%.

Table 11: The Fechner model. Choice is dependent variable. Probit.
i 1 2 3 4 5 6 7 8
�i 2.131 2.267 1.714 1.368 -0.305 -1.249 -1.509 -1.766

(0.278) (0.271) (0.160) (0.123) (0.091) (0.130) (0.194) (0.202)
Wald test a: symmetry restrictions, Fechner (p-value): 61.91 (0.000)
Wald test b: symmetry restrictions, biased midpoint (p-value): 3.79 (0.285)
Note: Sample is all 356 rounds with human contestants. Robust standard errors

in parentheses, corrected for clustering at the level of individual players.

Wald tests a and b tests the restrictions given in equations (4) and (5), respectively.
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